Date: Oct. 15/09

When we solve an equation, we have to perform operations which keep the equation **BALANCED**. To solve an equation, we need to find the value of the variable which makes the equation true. To "isolate the variable" [another way of saying "solve the equation"], the first method we will use is to perform the same operation on both sides of the equation.

Ex. 1 Solve for the variable.

a)
$$x + 2 = 7$$

b)
$$y-9=15$$

c)
$$14 = g - 21$$

$$\kappa = 5$$

d)
$$3y = 24$$

e)
$$\frac{x}{5} = \frac{1}{5}$$

f)
$$\frac{y}{20} = 100$$

$$\frac{39}{3} = \frac{24}{3}$$

g)
$$-2y = -50$$

h)
$$\frac{1}{-4} = -7$$

i)
$$-8y = 20$$

Shortcut: When adding or subtracting to keep the balance, we will now simply "transpose" the term to the other side of the equation.

Ex. 2 Solve for the variable.

a)
$$x+2=7$$

 $x=7-2$
 $x=5$

$$y = 15 + 9$$
 $y = 24$

c)
$$3y = 24$$

 $3y = 24$
 $y = 24$
 $y = 24$
 $y = 24$
 $y = 24$

Note: "*Transposing*" only applies to terms that are added or subtracted. Ex. 2c above is NOT an example of "*transposing*".

Now we will learn the method for performing a "proper" mathematical "Check".

Step 1: Solve the equation like you normally would.

Step 2: Substitute your solution value into the original Left Side [L.S.] of the equation, (use brackets) then use BEDMAS to find the L.S. "balance value".

Step 3: Substitute your solution value into the original Right Side [R.S.] of the equation, (use brackets) then use BEDMAS to find the R.S. "balance value".

=-5-7(4)

··LS=RS

: X=4 is correct.

Step 4: Compare the L.S. and R.S. values and GIVE A CONCLUSION.

Ex. 3 Solve and check.

a)
$$3y-5=22$$

 $3y=22+5$
 $3y=27$
 $3y=27$
 $y=9$

b)
$$-5-7x = -33$$

 $-7x = -33 + 5$
 $-7x = -28$
 $-7x = -28$

Check if
$$y = 9$$

L.S. = $3y-5$ R.S. = 22

= $3(9)-5$

= $27-5$

= 22

: $25 = 85$

: $25 = 85$

Check if $x = 4$

L.S. = $-5-7x$ R.S. = -33