5.4 Slope as a Rate of Change

p. 270 #13

A large party balloon is being filled with helium at a constant rate.

After 8 s, there is 2.5 L of helium in the balloon.

- a) Graph the relation.
- b) The balloon will burst if there is more than 10 L of helium in it. How long will it take to fill the balloon with that much helium? Mark this point on your graph.

b) it will take 32 seconds

15.

p. 270 #16

A scuba tank holds 2.6 m³ of compressed air. A diver at a shallow depth uses about 0.002 m³ per breath and takes about 15 breaths per minute.

a) How much air will the diver use in 1 min?

$$Air = \frac{0.002m^3}{breath} \times \frac{15breaths}{min} \times 1min$$
$$= 0.03m^3$$

b) How long will the air in the tank last at this rate?

$$time = 2.6m^{3} \div \frac{0.03m^{3}}{\min}$$
$$= 2.6m^{3} \times \frac{\min}{0.03m^{3}}$$
$$= 86.\overline{6} \min$$
$$= 87 \min$$

c) At a depth of 10 m, the diver is breathing compressed air at 0.004 m³ per breath. How long will the air last at this depth?

$$time = 2.6m^{3} \div \left(\frac{0.004m^{3}}{breath} \times \frac{15breaths}{min} \times 1 min\right)$$

$$= 2.6m^{3} \div \frac{0.06m^{3}}{breath}$$

$$= 2.6m^{3} \times \frac{min}{0.06m^{3}}$$

$$= 43.\overline{3} min$$

$$= 43 min$$

d) At the maximum depth recommended for sport diving, a diver is breathing air at a rate of 0.01 m³ per breath. How long will the air last at this depth?

$$time = 2.6m^{3} \div \left(\frac{0.01m^{3}}{breath} \times \frac{15breaths}{min} \times 1 min\right)$$

$$= 2.6m^{3} \div \frac{0.15m^{3}}{breath}$$

$$= 2.6m^{3} \times \frac{min}{0.15m^{3}}$$

$$= 17.\overline{3} min$$

$$= 17 min$$