1. Write each of the following in standard form.
(a) $f(x)=(3 x+1)(x-2)$

Standard form: $f(x)=3 x^{2}-5 x-2$
(b) $f(x)=(2+3 x)(x-3)$

$$
\text { Standard form: } \quad \begin{aligned}
f(x) & =2 x-6+3 x^{2}-9 x \\
& =3 x^{2}-7 x-6
\end{aligned}
$$

2. Write each of the following in factored form.
(a) $\begin{aligned} f(x) & =x^{2}-16 \\ & =(x-4)(x+4)\end{aligned}$
(b) $f(x)=x^{2}+3 x-18$
$=(x+6)(x-3)$
$f(x)=5 x^{2}-20$
(c) $\quad=5\left(x^{2}-4\right)$
$=5(x-2)(x+2)$
3. Determine the zeros, the axis of symmetry, and the maximum and minimum value for each of the following quadratic equations. Show your work.
(a) $f(x)=3 x^{2}-3 x$
(b)

$$
f(x)=3 x(x-1)
$$

$$
\therefore x=0 \text { and } x=1 \text { are the zeros }
$$

$$
\begin{aligned}
f(x) & =-\frac{1}{2}\left(x^{2}+2 x-3\right) \\
& =-\frac{1}{2}(x+3)(x-1)
\end{aligned}
$$

$$
\text { axis of symmetry: } x=\frac{1}{2} \text {. }
$$

$$
\therefore x=-3 \text { and } x=1 \text { are the zeros }
$$

axis of symmetry : $x=-1$

$$
f\left(\frac{1}{2}\right)=3\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)
$$

$$
=3\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)
$$

$$
=-\frac{3}{4}
$$

$$
\therefore \min =-\frac{3}{4}
$$

$$
\begin{aligned}
f(-1) & =-\frac{1}{2}\left((-1)^{2}+2(-1)-3\right) \\
& =-\frac{1}{2}(1-2-3) \\
& =-\frac{1}{2}(-4) \\
& =2 \\
\therefore \max & =2
\end{aligned}
$$

(c) $f(x)=-4 x^{2}-12 x+7$

$$
\begin{aligned}
f(x) & =-\left(4 x^{2}+12 x-7\right) \\
& =-(2 x+7)(2 x-1) \\
\therefore x= & \frac{-7}{2} \text { and } x=\frac{1}{2} \text { are the zeros }
\end{aligned}
$$

$$
\begin{aligned}
& \text { axis of symmetry: } x=\frac{\frac{-7}{2}+\frac{1}{2}}{2} \\
& x=\frac{\frac{-6}{2}}{2} \\
& x=-\frac{3}{2}
\end{aligned} \begin{aligned}
\begin{aligned}
f\left(-\frac{3}{2}\right) & =-4\left(-\frac{3}{2}\right)^{2}-12\left(-\frac{3}{2}\right)+7 \\
& =-4\left(\frac{9}{4}\right)+\frac{36}{2}+7 \\
= & -9+18+7
\end{aligned} \\
\max =16
\end{aligned}
$$

4. Write the corresponding quadratic equation for each of the following functions. Leave your answer in factored form.
(a)

$$
\begin{aligned}
y & =a(x-r)(x-s) \\
& =a(x+4)(x-3)
\end{aligned}
$$

$\operatorname{subin}(x, y)=(0,4.8)$ to get
$4.8=a(0+4)(0-3)$
$4.8=a(-12)$
$\frac{4.8}{-12}=a \quad \therefore y=\frac{-2}{5}(x+4)(x-3)$
$\frac{48}{-120}=a$
$\frac{2}{-5}=a$
(b)

The function has zeros at $x=2$ and $x=7$ and passes through the point $(0,-4)$

$$
\begin{aligned}
y & =a(x-r)(x-s) \\
& =a(x-2)(x-7)
\end{aligned}
$$

sub in $(x, y)=(0,-4)$ to get
$-4=a(0-2)(0-7)$
$-4=a(14)$
$\frac{-4}{14}=a \quad \therefore y=\frac{-2}{7}(x-2)(x-7)$
$\frac{-2}{7}=a$
5. Can all quadratic equations be solved by factoring? Explain.

NO. Some quadratics do not pass through the x-axis....meaning there are NO zeroes.
6. Solve for x by factoring. Show your work.
(a) $4 x^{2}+4 x-3=0$
(b) $x^{2}+6 x-3=-3$

$$
\begin{array}{ll}
& x^{2}+6 x-3=-3 \\
(2 x+3)(2 x-1)=0 & x^{2}+6 x-3+3=0 \\
\therefore x=\frac{-3}{2} \text { and } x=\frac{1}{2} & x^{2}+6 x=0 \\
& x(x+6)=0 \\
& \therefore x=0 \text { and } x=-6
\end{array}
$$

7. A firecracker is fired from the ground. The height of the firecracker at a given time is modelled by the function $h(t)=-5 t^{2}+40 t$, where $h(t)$ is the height in metres and t is time in seconds.
(a) When will the firecracker hit the ground?

$$
\begin{aligned}
h(t)= & -5 t(t-8) \\
& \therefore t=0 \text { and } t=8 \quad \therefore \text { it hits the ground after } 8 \sec \text { onds. }
\end{aligned}
$$

(b) What is the maximum height of the firecracker?

$$
\begin{array}{rlc}
h(t) & =-5\left(t^{2}-8 t+16\right)+80 & \text { axis of symmetry }: x=4 \\
& =-5(t-4)^{2}+80 & \text { OR }
\end{array} \begin{aligned}
h(4) & =-5(4)^{2}+40(4) \tag{OR}\\
\therefore \text { the } \max =80 \text { metres } & \\
&
\end{aligned}
$$

(c) When does the firecracker reach a maximum height?
the vertex $=(4,80)$
\therefore the max occurs at 4 sec onds
(d) When will the firecracker reach a height of 75 m ?

$$
\begin{aligned}
& 75=-5 t^{2}+40 t \\
& 0=-5 t^{2}+40 t-75 \\
& 0=-5\left(t^{2}-8+15\right) \\
& 0=-5(t-3)(t-5) \\
& \therefore t=3 \text { and } t=5
\end{aligned}
$$

\therefore the rocket reaches 75 m at 3 sec onds (going up)
and at 5 sec onds (when the rocket is going down).
8. The population of a city $P(t)$ is modeled by the function $P(t)=0.5 t^{2}+10 t+200$, where $P(t)$ is the population in thousands and t is time in years. NOTE: $t=0$ represents the year 2000. According to the model,
(a) in what year will the population reach 312000 ? (see instructor for answer)
(b) will the population reach over 2 million people by the year 2050? Show your work. sub $t=50$

$$
\begin{aligned}
P(50)= & 0.5(50)^{2}+10(50)+200 \\
& =1950
\end{aligned}
$$

So the population is 1950000
<2 million
\therefore No. The population will not exceed 2 million by 2050 .
9. A quadratic equation has zeros $x=-4$ and $x=2$. The minimum height is -5 units. Find the y-intercept for this quadratic equation (correct to 2 decimal places).

$$
\begin{array}{ll}
\frac{-4+2}{2}=\frac{-2}{2}=-1 & \\
\therefore \text { vertex }=(-1,-5) \\
y & =a(x-r)(x-s) \\
y & =a(x+4)(x-2) \\
-5 & =a(-1+4)(-1-2) \\
-5 & =a(3)(-3) \\
\frac{5}{9}=a & \therefore y=\frac{5}{9}(x+4)(x-2) \\
& \text { Let } x=0 \text { to find } y-\mathrm{ir} \\
& y=\frac{5}{9}(0+4)(0-2) \\
y & =\frac{5}{9}(-8) \\
y & =-4.44
\end{array}
$$

10. A toy rocket sitting on a tower is launched vertically upward. Its height y at time t is given in the table.

Time (in seconds)	Height (in metres)
0	16
1	49
2	60
3	85
4	88
5	81
6	64
7	37
8	0

(a) Sketch this curve on a grid.

(b) What is a possible equation for the curve of good fit? Show your work.

Let vertex be $(4,88)$ and use the y-intercept $(0,16)$ to get

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& \text { sub vertex }=(h, k)=(4,88) \text { to get } \\
& y=a(x-4)^{2}+88 \\
& \text { sub } y-\text { int whichoccurs at }(0,16) \\
& 16=a(0-4)^{2}+88 \\
& 16-88=a(16) \\
& \frac{-72}{16}=a \\
& -4.5=a
\end{aligned}
$$

$$
\therefore y=-4.5(x-4)^{2}+88
$$

$\therefore y=-4.5(x-4)^{2}+88$

