EXAM REVIEW

1. Write each of the following in standard form.
(a) $f(x)=(3 x+1)(x-2)$
(b) $f(x)=(2+3 x)(x-3)$
2. Write each of the following in factored form.
(a) $f(x)=x^{2}-16$
(b) $f(x)=x^{2}+3 x-18$
(c) $f(x)=5 x^{2}-20$
3. Determine the zeros, the axis of symmetry, and the maximum and minimum value for each of the following quadratic equations. Show your work.
(a) $f(x)=3 x^{2}-3 x$
(b) $f(x)=-\frac{1}{2} x^{2}-x-\frac{3}{2}$
(c) $f(x)=-4 x^{2}-12 x+7$
4. Write the corresponding quadratic equation for each of the following functions.

Leave your answer in factored form.
(a)

(b)

The function has zeros at $x=2$ and $x=7$ and passes through the point $(0,-4)$
5. Can all quadratic equations be solved by factoring? Explain.
6. Solve for x by factoring. Show your work.
(a) $4 x^{2}+4 x-3=0$
(b) $x^{2}+6 x-3=-3$
7. A firecracker is fired from the ground. The height of the firecracker at a given time is modelled by the function $h(t)=-5 t^{2}+40 t$, where $h(t)$ is the height in metres and t is time in seconds.
(a) When will the firecracker hit the ground?
(b) What is the maximum height of the firecracker?
(c) When does the firecracker reach a maximum height?
(d) When will the firecracker reach a height of 75 m ?
8. The population of a city $P(t)$ is modeled by the function $P(t)=0.5 t^{2}+10 t+200$, where $P(t)$ is the population in thousands and t is time in years. NOTE: $t=0$ represents the year 2000. According to the model,
(a) in what year will the population reach 312000 ?
(b) will the population reach over 2 million people by the year 2050? Show your work.
9. A quadratic equation has zeros $x=-4$ and $x=2$. The minimum height is -5 units. Find the y-intercept for this quadratic equation (correct to 2 decimal places).
10. A toy rocket sitting on a tower is launched vertically upward. Its height y at time t is given in the table.

Time (in seconds)	Height (in metres)
0	16
1	49
2	60
3	85
4	88
5	81
6	64
7	37
8	0

(a) Sketch this curve on a grid.
(b) What is a possible equation for the curve of good fit? Show your work.

