CHAPTER 3: Quadratic Models: Standard & Factored Forms

- 1. Write each of the following in standard form.
 - (a) f(x) = (3x+1)(x-2)

(b)
$$f(x) = (2+3x)(x-3)$$

2. Write each of the following in factored form.

(a)
$$f(x) = x^2 - 16$$

(b)
$$f(x) = x^2 + 3x - 18$$

(c)
$$f(x) = 5x^2 - 20$$

3. Determine the zeros, the axis of symmetry, and the maximum and minimum value for each of the following quadratic equations. Show your work.

$$f(x) = 3x^2 - 3x$$

- (b) $f(x) = -\frac{1}{2}x^2 x \frac{3}{2}$
- (c) $f(x) = -4x^2 12x + 7$
- 4. Write the corresponding quadratic equation for each of the following functions. *Leave your answer in factored form.*

(b)

The function has zeros at x = 2and x = 7 and passes through the point (0, -4)

- 5. Can all quadratic equations be solved by factoring? Explain.
- 6. Solve for x by factoring. Show your work.
 - (a) $4x^2 + 4x 3 = 0$ (b) $x^2 + 6x 3 = -3$
- 7. A firecracker is fired from the ground. The height of the firecracker at a given time is modelled by the function $h(t) = -5t^2 + 40t$, where h(t) is the height in metres and t is time in seconds.
 - (a) When will the firecracker hit the ground?
 - (b) What is the maximum height of the firecracker?
 - (c) When does the firecracker reach a maximum height?
 - (d) When will the firecracker reach a height of 75 m?

- 8. The population of a city P(t) is modeled by the function $P(t) = 0.5t^2 + 10t + 200$, where P(t) is the population in thousands and t is time in years. NOTE: t = 0 represents the year 2000. According to the model,
 - (a) in what year will the population reach 312 000?
 - (b) will the population reach over 2 million people by the year 2050? Show your work.
- 9. A quadratic equation has zeros x = -4 and x = 2. The minimum height is -5 units. Find the y-intercept for this quadratic equation (correct to 2 decimal places).
- 10. A toy rocket sitting on a tower is launched vertically upward. Its height y at time t is given in the table.

Time (in seconds)	Height (in metres)
0	16
1	49
2	60
3	85
4	88
5	81
6	64
7	37
8	0

- (a) Sketch this curve on a grid.
- (b) What is a possible equation for the curve of good fit? Show your work.

EXTRA QUESTIONS – Chapter 3 p. 188 #12-18