MCF3MI

CHAPTER 4: Quadratic Models: Standard & Factored Forms

1. Write the function $f(x) = 2(x+3)^2 - 2$ in standard form. f(x) = 2(x+3)(x+3) - 2

$$z(x + 3)(x + 3) - 2$$

= 2(x² + 6x + 9) - 2
= 2x² + 12x + 18 - 2
= 2x² + 12x + 16

2. For the function $f(x) = -(x-4)^2 + 1$, complete the table:

Vertex	(4, 1)
Axis of Symmetry	<i>x</i> = 4
Max/Min Value	max = 1
Domain	$\left\{x \in R\right\}$
Range	$\left\{ y \in R \mid y \le 1 \right\}$

3.

Determine the equation of the parabola .	$y = a(x-h)^{2} + k$ $y = a(x-3)^{2} + 3$ $11 = a(1-3)^{2} + 3$ $11 = a(-2)^{2} + 3$ 11-3 = 4a 8 = 4a
-4 -2 2 4 6 8 10 x	2 = a $\therefore y = 2(x-3)^2 + 3$

4. Write each function in vertex form and state the vertex.

(a)
$$f(x) = -x^2 + 6x + 7$$

(b) $g(x) = 2x^2 - 3x + 3.5$
 $g(x) = 2(x^2 - \frac{3}{2}x) + 3.5$
 $g(x) = 2(x^2 - \frac{3}{2}x) + 3.5$
 $g(x) = 2(x^2 - \frac{3}{2}x) + 3.5$
 $g(x) = 2(x^2 - \frac{3}{2}x + \frac{9}{16} - \frac{9}{16}) + 3.5$
 $g(x) = 2(x^2 - \frac{3}{2}x + \frac{9}{16} - \frac{9}{16}) + 3.5$
 $g(x) = 2(x^2 - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x^2 - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x^2 - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x^2 - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x^2 - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x^2 - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x^2 - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$
 $g(x) = 2(x - \frac{3}{2}x + \frac{18}{16}) - \frac{18}{16} + 3.5$

5. The cost, C(n), of operating a cement-mixing truck is modeled by the function $C(n) = 2.2n^2 - 66n + 700$, where *n* is the number of minutes the truck is running. What is the minimum cost of operating the truck? Show your work.

$$C(n) = 2.2(n^{2} - 30n) + 700$$

= 2.2(n^{2} - 30n + 225 - 225) + 700
= 2.2(n^{2} - 30n + 225) - 495 + 700
= 2.2(n - 15)^{2} + 205

 \therefore min = 205

6. Solve using the quadratic formula. State your answers correct to 2 decimal places.

(a)
$$8x^2 - 6x + 1 = 0$$

 $8x^2 - 6x + 1 = 0$
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $= \frac{6 \pm \sqrt{b^2 - 4(8)(1)}}{2(8)}$
 $= \frac{6 \pm \sqrt{36 - 32}}{16}$
 $= \frac{6 \pm \sqrt{4}}{16}$
 $\therefore x = \frac{6 \pm 2}{16}$ and $x = \frac{6 - 2}{16}$
 $x = \frac{1}{2}$ and $x = \frac{1}{4}$
(b) $x^2 + 3x = 14$
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $= \frac{-3 \pm \sqrt{3}^2 - 4(1)(-14)}{2(1)}$
 $= \frac{-3 \pm \sqrt{9 + 56}}{2}$
 $\therefore x = \frac{-3 \pm \sqrt{65}}{2}$ and $x = \frac{-3 - \sqrt{65}}{2}$
 $x \pm 2.53$ and $x \pm -5.53$

7. A theatre company's profit can be modeled by the function $P(x) = -60x^2 + 700x - 1000$ where x is the price of a ticket in dollars. What is the break-even price of the tickets? Set P(x) = 0

$$0 = -60x^{2} + 700x - 1000$$

$$a = -60, b = 700, c = -1000$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

= $\frac{-700 \pm \sqrt{700^2 - 4(-60)(-1000)}}{2(-60)}$
= $\frac{-700 \pm \sqrt{250000}}{-120}$
= $\frac{-700 \pm 500}{-120}$
 $\therefore x = \frac{-700 + 500}{-120}$ and $x = \frac{-700 - 500}{-120}$
 $\doteq 1.67$ = 10.0

NOTE: A "break even" point means that you neither made money nor lost money. ie.... P(x) = 0The break even points occur when tickets are sold for \$1.67 and \$10.

- 8. A model rocket is launched into the air. Its height, h(t), in metres after *t* seconds is $h(t) = -5t^2 + 40t + 2$.
 - (a) When is the rocket at a height of 62 m (correct to 2 decimal places)?

 $62 = -5t^{2} + 40t + 2$ $0 = -5t^{2} + 40t + 2 - 62$ $0 = -5t^{2} + 40t - 60$ $0 = -5(t^{2} - 8t + 12)$ 0 = -5(t - 6)(t - 2)∴ t = 6 and t = 2

The rocket reaches 62m at 2 seconds (going up) and at 6 seconds (coming back down).

(b) What is the height of the rocket after 6 seconds?

62 metres. (see part (a) above)

(c) What is the maximum height of the rocket?

$$h(t) = -5(t^{2} - 8t) + 2$$

= -5(t^{2} - 8t + 16 - 16) + 2
= -5(t^{2} - 8t + 16) + 80 + 2
= -5(t - 4)^{2} + 82

The maximum height of the rocket is 82 metres at 4 seconds.

- 9. Without solving, determine the number of solutions of each equation. Show your work for full marks.
 - (b) $3x^2 5x 9 = 0$ (a) $x^2 - 5x + 9 = 0$ (c) $16x^2 - 8x + 1 = 0$ $3x^2 - 5x - 9 = 0$ $x^2 - 5x + 9 = 0$ $16x^2 - 8x + 1 = 0$ $b^{2} - 4ac = (-5)^{2} - 4(1)(9)$ $b^{2} - 4ac = (-5)^{2} - 4(3)(-9)$ $b^{2}-4ac = (-8)^{2}-4(16)(1)$ = 25 - 36= 25 + 108= 64 - 64= -11=133= 0< 0 >0 : ONE real root :. ZERO real roots :. TWO real roots

10. For the function $f(x) = kx^2 + 8x + 5$, what value(s) of k will have two distinct solutions.

Two distinct real solutions means that $b^2 - 4ac > 0$

$$f(x) = kx^{2} + 8x + 5$$

$$a = k, b = 8, c = 5$$

$$b^{2} - 4ac > 0$$

$$(8)^{2} - 4(k)(5) > 0$$

$$64 - 20k > 0$$

$$64 - 20k$$

$$\frac{64}{20} > k$$

$$\frac{16}{5} > k$$

11. The function $f(x) = x^2 + kx + k + 8$ touches the x-axis once. What value(s) could k be? This means that there is only ONE real root. This happens when $b^2 - 4ac = 0$.

$$f(x) = x^{2} + kx + k + 8$$

$$a = 1, b = k, c = (k + 8)$$

$$b^{2} - 4ac = 0$$

$$(k)^{2} - 4(1)(k + 8) = 0$$

$$k^{2} - 4k - 32 = 0$$

$$(k - 8)(k + 4) = 0$$

$$\therefore k = 8 \quad or \quad k = -4$$