MCF3MI

EXAM REVIEW

CHAPTER 4: Quadratic Models: Standard & Vertex Forms

- 1. Write the function $f(x) = 2(x+3)^2 2$ in standard form.
- 2. For the function $f(x) = -(x-4)^2 + 1$, complete the table:

Vertex	
Axis of Symmetry	
Max/Min Value	
Domain	
Range	

3.

- 4. Write each function in vertex form and state the vertex.
 - (a) $f(x) = -x^2 + 6x + 7$ (b) $g(x) = 2x^2 3x + 3.5$
- 5. The cost, C(n), of operating a cement-mixing truck is modeled by the function $C(n) = 2.2n^2 66n + 700$, where *n* is the number of minutes the truck is running. What is the minimum cost of operating the truck? Show your work.
- 6. Solve using the quadratic formula. State your answers correct to 2 decimal places. (a) $8x^2-6x+1=0$ (b) $x^2+3x=14$
- 7. A theatre company's profit can be modeled by the function $P(x) = -60x^2 + 700x 1000$ where x is the price of a ticket in dollars. What is the break-even price of the tickets?

- 8. A model rocket is launched into the air. Its height, h(t), in metres after *t* seconds is $h(t) = -5t^2 + 40t + 2$.
 - (a) When is the rocket at a height of 62 m (correct to 2 decimal places)?
 - (b) What is the height of the rocket after 6 seconds?
 - (c) What is the maximum height of the rocket?
- 9. Without solving, determine the number of solutions of each equation. Show your work for full marks.
 - (a) $x^2 5x + 9 = 0$ (b) $3x^2 5x 9 = 0$ (c) $16x^2 8x + 1 = 0$
- 10. For the function $f(x) = kx^2 + 8x + 5$, what value(s) of k will have two distinct solutions.
- 11. The function $f(x) = x^2 + kx + k + 8$ touches the x-axis once. What value(s) could k be?

EXTRA QUESTIONS – Chapter 4 p. 382 # 1-5, 16-24