Solutions 5

1. Use a calculator to evaluate to four decimal places.
(a) $\cos 11^{\circ}$
(b) $\tan 83^{\circ}$ $=8.1443$
(c) $\sin 39^{\circ}$
$=0.6293$
2. Use a calculator to find θ to the nearest degree.
(a) $\cos \theta=0.3862$
(b) $\begin{aligned} \tan \theta & =1.2375 \\ \theta & =51^{\circ}\end{aligned}$

$$
\theta=67^{\circ}
$$

$$
\theta=51^{\circ}
$$

3. Determine all the interior angles in $\triangle P Q R$ correct to the nearest degree.

$$
\begin{aligned}
& \angle Q P R=62^{\circ}(A S T) \\
& \frac{\sin 62^{\circ}}{183}=\frac{\sin R}{100} \\
& \frac{100 \sin 62^{\circ}}{183}=\sin R \\
& 0.4825=\sin R \\
& \angle R \doteq 29^{\circ}
\end{aligned} \begin{aligned}
& \therefore \angle Q=180-29-62 \\
& =89^{\circ}
\end{aligned}
$$

4. Solve $\Delta J K L$ where $j=17.0 \mathrm{~cm}, k=18.0 \mathrm{~cm}$, and $l=21.0 \mathrm{~cm}$. Include a diagram.

$$
\begin{aligned}
& \text { Use the Cosine Law to find angle K } \\
& k^{2}=j^{2}+l^{2}-2 j l \cos K \\
& 18^{2}=17^{2}+21^{2}-2(17)(21) \cos K \\
& \frac{324-289-441}{-714}=\cos K \\
& \frac{-406}{-714}=\cos K \\
& 0.5686 \doteq \cos K \\
& \angle K=55.3^{\circ}
\end{aligned}
$$

Now, use the Sine Law to get $\angle J$.

$$
\begin{array}{lrl}
\frac{\sin J}{17} & =\frac{\sin 55.3^{\circ}}{18} & \\
\sin J=\frac{17 \sin 55.3^{\circ}}{18} & \therefore \angle L & =180-55.3-50.9 \\
\sin J & =0.7765 & \\
\angle J & =53.9^{\circ}(A S T)
\end{array}
$$

5. A 2.7 m ladder can be used safely only at an angle of 70° with the horizontal. How high, to the nearest metre, can the ladder reach? Include a diagram.

$\sin 70^{\circ}=\frac{h}{2.7}$
$2.7 \sin 70^{\circ}=h$
$2.54=h$
$\therefore h \doteq 3 m$
\therefore the ladder can reach about 2.5 mup the wall.
6. A surveyor wants to calculate the distance $B C$ across a river. He selects a position, A, so that $B A$ is 91 m , and he measures $\angle A B C$ and $\angle B A C$ as 34° and 51°, respectively. Calculate the distance $B C$ to the nearest tenth of a metre.

$$
\begin{aligned}
& \angle C=180-51-34 \\
& =95^{\circ} \\
& \therefore \frac{\sin 95^{\circ}}{91}=\frac{\sin 51^{\circ}}{a} \\
& a=\frac{91 \sin 51^{\circ}}{\sin 95^{\circ}} \\
& a \doteq 70.99 m \\
& a \doteq 71 \mathrm{~m}
\end{aligned}
$$

7. Two sides of a parallelogram measure 6.5 cm and 8.0 cm . The longer diagonal is 11.3 cm long. How long, to the nearest centimeter, is the other diagonal? (Include a diagram).
(see instructor for solution)
8. A temporary support cable for a radio antenna is 110 m long and has an angle of elevation of 30°. Two other support cables are already attached, each at an angle of elevation of 70°. How long, to the nearest centimetre, is each of the shorter cables?

$$
\begin{aligned}
& \frac{\sin 110^{\circ}}{110}=\frac{\sin 30^{\circ}}{x} \\
& x=\frac{110 \sin 30^{\circ}}{\sin 110^{\circ}} \\
& x \doteq 58.5 \mathrm{~m}
\end{aligned}
$$

Each of the shorter cables is approximately 58.5 metres long.

