1. Information about the movement of a Ferris wheel is shown below.

(a) How long does it take for the Ferris wheel to make five complete rotations?

1 complete turn takes 40 seconds 5 complete turns takes 200 seconds
(b) What is the height of the axle supporting the Ferris wheel?

$$
\text { axis }=8 m
$$

(c) Calculate the speed at which the wheel is rotating.

$$
\begin{aligned}
\text { Circumference of the wheel } & =2 \pi r \\
& =2 \pi(6) \\
& =37.68 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\text { Speed } & =\text { distance/time } \\
& =37.68 / 40 \\
& =0.942 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2. Given the following graph, complete the given analysis.

Amplitude: 1
Period: 360°
Range: $\{y \in R \mid-3 \leq y \leq-1\}$
Number of cycles from -540 to 540: 3
Axis: $y=-2$
3. Describe the transformation $g(x)=-2 \sin x+1$ and then sketch it.

The sinusoidal curve $y=\sin x$ has been:

- vertically stretched by a factor of 2
- reflected in the x-axis
- vertically translated up 1 unit

4. What is the range for each of the following sinusoidal functions?
(a) $f(x)=0.5 \sin x-4$
$\{y \in R \mid-4.5 \leq y \leq-3.5\}$
(b) $f(x)=\sin \left(x-180^{\circ}\right)$
$\{y \in R \mid-1 \leq y \leq+1\}$
5. The function $f(x)=\sin x$ has been translated 60° to the right, vertically stretched by a factor of 3 and reflected in the x-axis. Write the new equation.

$$
y=-3 \sin \left(x-60^{\circ}\right)
$$

6. Write the equation for the sinusoidal function.
(a)
(b)

$$
y=2 \sin \left(\theta-90^{\circ}\right)-1
$$

Other answers exist.
Seethe teacher

$y=\sin \left(\theta+180^{\circ}\right)+3$
Other answers exist.
See the teacher
7. Complete the chart below.

Sinusoidal Function	Maximum	Minimum
(a) $\quad f(x)=3 \sin x$	3	-3
(b) $\quad f(x)=-\sin \left(x-45^{\circ}\right)+6$	7	5
(c) $\quad f(x)=-0.25 \sin x-1.5$	-1.25	-1.75

8. The height of a Ferris wheel is modeled by the function $h(x)=6 \sin \left(x-45^{\circ}\right)+7$, where $h(x)$ is in metres and x is the number of degrees the wheel has rotated from the boarding position of a rider.
(a) Sketch the curve.

(b) When the rider has rotated 400° from the boarding position, how high above the ground is the rider?

$$
\begin{aligned}
& \text { sub } x=400^{\circ} \\
& \begin{aligned}
y & =6 \sin \left(400^{\circ}-45^{\circ}\right)+7 \\
& =6 \sin \left(355^{\circ}\right)+7 \\
& =6(-0.0872)+7 \\
& =-0.5229+7 \\
& =6.5 \mathrm{~m}
\end{aligned}
\end{aligned}
$$

The rider is approx. 6.5 metres above the ground
9. Sketch each sinusoidal function on the grid provided.
(a) $f(x)=2 \sin \left(x-90^{\circ}\right)$

(b) $f(x)=0.5 \sin \left(x-60^{\circ}\right)-2$

