MCF3MI

CHAPTER 7: Exponential Functions

1. Write as a single power. Express answers with positive exponents. DO NOT EVALUATE.

(a)
$$\frac{4^{3} \times 4 \times 4^{2}}{= 4^{6}}$$

(b) $\frac{5(5^{3})}{= 5^{4}}$
(c) $= \frac{(-4)^{9}}{(-4)^{18}}$
 $= (-4)^{-9}$
 $= \frac{1}{(-4)^{9}}$
(d) $= \frac{3^{4}}{3^{6}}$
 $= \frac{1}{3^{2}}$
(e) $= \frac{20^{-8}}{20^{8}}$
 $= 20^{-16}$
 $= \frac{1}{20^{16}}$
(f) $= \left(\frac{1}{9}\right)^{2}$
 $= \frac{1}{9^{2}}$

2. Evaluate WITHOUT using a calculator.

$$256^{\frac{-5}{4}} = (\sqrt[4]{256})^{-5} \qquad (-\frac{1}{2})^{3} + 2^{-3} \qquad 4^{-1} + 4^{0} + 4^{2}$$
(a) $= 4^{-5} \qquad (b) = -\frac{1}{8} + \frac{1}{8} \qquad (c) = \frac{1}{4} + 1 + 16$

$$= \frac{1}{4^{5}} = 0 \qquad = 17.25$$

$$= \frac{1}{1024} \qquad (\frac{27}{64})^{\frac{-1}{3}} \qquad (f) \stackrel{\sqrt[5]{-32}}{= -2}$$

$$= \frac{4^{3}}{= 64} \qquad = \frac{\sqrt[3]{64}}{\sqrt[3]{27}} \qquad (f) \stackrel{\sqrt[5]{-32}}{= -2}$$

3. Complete the table.

Exponential Form	Radical Form	Evaluation of Expression
$81^{\frac{1}{4}}$	<u>4√81</u>	3
$27^{\frac{4}{3}}$	$\sqrt[3]{27}^4$	81
$7776^{\frac{1}{5}}$	\$√7776	6
4096 ^{0.75}	$\sqrt[4]{4096}^{3}$	512

4. Use your calculator to evaluate each expression. Express answers to two decimals.

(a)
$$256^{0.66} = 38.85$$
 (b) $15^{\frac{-3}{2}} = 0.02$ (c) $\sqrt[11]{3.7} = 1.13$ (d) $\sqrt[4]{-99}$ not possible

5. Complete the table.

Function	Exponential Growth or Decay?	Initial Value (y-intercept)	Growth/Decay rate
$P(n) = 200(1 - 0.032)^n$	decay	200	3.2%
$A(x) = (2)^x$	growth	1	100%
$Q(x) = 0.85(0.77)^{x}$	decay	0.85	23%

6. Calculate finite differences to classify each function as linear, quadratic, exponential or none of those.

(a)	

Х	у	Δy	$\Delta(\Delta y)$
-4	47		
		-21	
-3	26		6
		-15	
-2	11		6
		-9	
-1	2		6
		-3	
0	-1		

(b)			
Х	у	Δy	$\Delta(\Delta y)$
-1	0.125		
		0.125	
0	0.25		1.625
		1.75	
1	2		4.25
		6	
2	8		18
		24	
3	32		

Conclusion <u>quadratic</u>

Conclusion <u>none</u>

Formulas:

 $P = P_0(1+r)^n \qquad P = P_0(1-r)^n \qquad I(d) = I_0(1+r)^d \qquad N(d) = N_0(1+r)^d$

- 7. Greg invests \$750 in a bond that pays 4.3% per year.
 - (a) Calculate, to the nearest penny, what Greg's total amount will be after 4 years. $A = 750(1.043)^4$

A = 887.56 : the amount will be \$887.56

(b) How much money did \$750 earn in four years? 887.56-750=137.56 ∴ *it earned* \$137.56 (c) If Greg is planning to enter University in 2018, would his money have doubled by then? 2018 is 8 years from now

 $A = 750(1.043)^{8}$ A = 1050.35 \therefore he did not get \$1500, so his money did not double

- 8. A police diver is searching a harbour for stolen goods. The equation that models the intensity of light per metre of depth is $I(n) = 100(0.92)^n$.
 - (a) At what rate does the light diminish per metre? 1-r=0.92r=0.08 \therefore the light diminishes by 8% per metre
 - (b) Determine the amount of sunlight the diver will have at a depth of 18 m, relative to the intensity at the surface.

 $I(18) = 100(0.92)^{18}$

I(18) = 22.29 \therefore the light is 22.29% as intense as it was at the surface

9. Ryan purchases a used vehicle for \$11, 899. If the vehicle depreciates at a rate of 13% yearly, what will the car be worth, to the nearest dollar, in ten years? Show your work.

 $P(10) = 11899(1 - 0.13)^{10}$ $P(10) = 2955.99 \qquad \therefore it will be worth $2955.99 in 10 years$

- 10. After being filled, a basketball loses 3.2% of its air every day. The initial amount of air in the ball was 840 cm^3
 - (a) Write an equation to model this situation.

Let P(t) represent the final amount of air left in the ball after t days $P(t) = 840(1-0.032)^t$

(b) Determine the volume after 4 days.

 $P(4) = 840(0.968)^4$

P(4) = 737.53 : there is 737.53 cm³ of air left in the ball

(c) Will this model be valid after 6 weeks? Explain.

We can still use the equation for t = 42 (6 weeks = 42 days). However, the ball probably won't be losing air at the same rate (it will be losing it at a much slower rate that it was when it was first pumped up) so the equation will not model the situation accurately after so long.

11. List 4 characteristics of an exponential function.

Consider the function $f(x)=b^x$, b is positive and not equal to 1

- domain is $\{x \in R\}$, range is $\{y \in R | y > 0\}$
- *if b>1, the greater the value, the faster the growth*
- if 0<b<1, the lesser the value, the faster the decay
- horizontal asymptote is y=0 (the x-axis)
- y-intercept is 1

First and second differences are related by a multiplication pattern.

EXTRA QUESTIONS: Chapter 7 p. 526 # 1 - 8