1. Write as a single power. Express answers with positive exponents. DO NOT EVALUATE.
$\frac{(-4)^{6}(-4)^{3}}{\left((-4)^{9}\right)^{2}}$
(a) $\begin{aligned} & 4^{3} \times 4 \\ & =4^{6} \\ & \\ & \frac{3^{4}}{\left(3^{2}\right)^{3}}\end{aligned}$
(b) $\begin{aligned} & 5\left(5^{3}\right) \\ & =5^{4}\end{aligned}$
(c) $=\frac{(-4)^{9}}{(-4)^{18}}$
$=(-4)^{-9}$

$$
=\frac{1}{(-4)^{9}}
$$

$$
\left(\frac{1}{9}\right)^{5}\left(\frac{1}{9}\right)^{-3}
$$

(d) $\begin{aligned} & =\frac{3^{4}}{3^{6}} \\ & =\frac{1}{3^{2}}\end{aligned}$

$$
\begin{aligned}
& \frac{\left(20^{-1}\right)^{8}}{20^{2} 20^{6}} \\
(e) & =\frac{20^{-8}}{20^{8}} \\
& =20^{-16} \\
& =\frac{1}{20^{16}}
\end{aligned}
$$

(f) $=\left(\frac{1}{9}\right)^{2}$

$$
=\frac{1}{3^{2}}
$$

$$
=\frac{1}{9^{2}}
$$

2. Evaluate WITHOUT using a calculator.
$256^{\frac{-5}{4}}$
$=(\sqrt[4]{256})^{-5}$
$\left(-\frac{1}{2}\right)^{3}+2^{-3}$
$4^{-1}+4^{0}+4^{2}$
(a) $=4^{-5}$
(b) $=-\frac{1}{8}+\frac{1}{8}$
$=\frac{1}{4^{5}}$

$$
=0
$$

(c) $=\frac{1}{4}+1+16$

$$
=17.25
$$

$=\frac{1}{1024}$

$$
16^{\frac{3}{2}}
$$

$$
\begin{aligned}
& \left(\frac{27}{64}\right)^{\frac{-1}{3}} \\
& \text { (e) }=\left(\frac{64}{27}\right)^{\frac{1}{3}}
\end{aligned}
$$

(d) $=\sqrt{16}^{3}$
$=4^{3}$
$=64$
(f) $\begin{aligned} & \sqrt[5]{-32} \\ & =-2\end{aligned}$
3. Complete the table.

| Exponential Form | Radical Form | Evaluation <br> of Expression |
| :---: | :---: | :---: |
| $81^{\frac{1}{4}}$ | $\sqrt[4]{81}$ | 3 |
| $27^{\frac{4}{3}}$ | $\sqrt[3]{27}^{4}$ | 81 |
| $7776^{\frac{1}{5}}$ | $\sqrt[5]{7776}^{3}$ | 6 |
| $4096^{0.75}$ | $\sqrt[4]{4096}^{3}$ | 512 |

4. Use your calculator to evaluate each expression. Express answers to two decimals.
(a) $256^{0.66}=38.85$
(b) $15^{\frac{-3}{2}}=0.02$
(c) $\sqrt[11]{3.7}=1.13$
(d) $\sqrt[4]{-99}$ not possible
5. Complete the table.

| Function | Exponential Growth <br> or Decay? | Initial Value <br> (y-intercept) | Growth/Decay <br> rate |
| :--- | :---: | :---: | :---: |
| $P(n)=200(1-0.032)^{n}$ | decay | 200 | $3.2 \%$ |
| $A(x)=(2)^{x}$ | growth | 1 | $100 \%$ |
| $Q(x)=0.85(0.77)^{x}$ | decay | 0.85 | $23 \%$ |

6. Calculate finite differences to classify each function as linear, quadratic, exponential or none of those.

| x | y47 | $\Delta y$ | $\Delta(\Delta y)$ |
| :---: | :---: | :---: | :---: |
| -4 |  |  |  |
|  |  | -21 |  |
| -3 | 26 |  | 6 |
|  |  | -15 |  |
| -2 | 11 |  | 6 |
|  |  | -9 |  |
| -1 | 2 |  | 6 |
|  |  | -3 |  |
| 0 | -1 |  |  |
|  |  |  |  |

Conclusion $\qquad$ quadratic
(b)

| X | y | $\Delta y$ | $\Delta(\Delta y)$ |
| :---: | :---: | :---: | :---: |
| -1 | 0.125 |  |  |
|  |  | 0.125 |  |
| 0 | 0.25 |  | 1.625 |
|  |  | 1.75 |  |
| 1 | 2 |  | 4.25 |
|  |  | 6 |  |
| 2 | 8 |  | 18 |
|  |  | 24 |  |
| 3 | 32 |  |  |

Conclusion $\qquad$

Formulas:

$$
P=P_{0}(1+r)^{n} \quad P=P_{0}(1-r)^{n} \quad I(d)=I_{0}(1+r)^{d} \quad N(d)=N_{0}(1+r)^{d}
$$

7. Greg invests $\$ 750$ in a bond that pays $4.3 \%$ per year.
(a) Calculate, to the nearest penny, what Greg's total amount will be after 4 years.

$$
\begin{aligned}
& A=750(1.043)^{4} \\
& A=887.56 \quad \therefore \text { the amount will be } \$ 887.56
\end{aligned}
$$

(b) How much money did $\$ 750$ earn in four years?

$$
887.56-750=137.56 \quad \therefore \text { it earned } \$ 137.56
$$

(c) If Greg is planning to enter University in 2018, would his money have doubled by then? 2018 is 8 years from now

$$
\begin{aligned}
& A=750(1.043)^{8} \\
& A=1050.35 \quad \therefore \text { he did not get } \$ 1500 \text {, so his money did not double }
\end{aligned}
$$

8. A police diver is searching a harbour for stolen goods. The equation that models the intensity of light per metre of depth is $I(n)=100(0.92)^{n}$.
(a) At what rate does the light diminish per metre?

$$
\begin{aligned}
& 1-r=0.92 \\
& r=0.08 \quad \therefore \text { the light diminishes by } 8 \% \text { per metre }
\end{aligned}
$$

(b) Determine the amount of sunlight the diver will have at a depth of 18 m , relative to the intensity at the surface.

$$
\begin{aligned}
& I(18)=100(0.92)^{18} \\
& I(18)=22.29 \quad \therefore \text { the light is } 22.29 \% \text { as intense as it was at the surface }
\end{aligned}
$$

9. Ryan purchases a used vehicle for $\$ 11,899$. If the vehicle depreciates at a rate of $13 \%$ yearly, what will the car be worth, to the nearest dollar, in ten years? Show your work.

$$
\begin{aligned}
& P(10)=11899(1-0.13)^{10} \\
& P(10)=2955.99 \quad \therefore \text { it will be worth } \$ 2955.99 \text { in } 10 \text { years }
\end{aligned}
$$

10. After being filled, a basketball loses $3.2 \%$ of its air every day. The initial amount of air in the ball was $840 \mathrm{~cm}^{3}$
(a) Write an equation to model this situation.

Let $P(t)$ represent the final amount of air left in the ball after $t$ days

$$
P(t)=840(1-0.032)^{t}
$$

(b) Determine the volume after 4 days.

$$
\begin{aligned}
& P(4)=840(0.968)^{4} \\
& P(4)=737.53 \quad \therefore \text { there is } 737.53 \mathrm{~cm}^{3} \text { of air left in the ball }
\end{aligned}
$$

(c) Will this model be valid after 6 weeks? Explain.

We can still use the equation for $t=42$ ( 6 weeks $=42$ days). However, the ball probably won't be losing air at the same rate (it will be losing it at a much slower rate that it was when it was first pumped up) so the equation will not model the situation accurately after so long.
11. List 4 characteristics of an exponential function.

Consider the function $f(x)=b^{x}, b$ is positive and not equal to 1

- domain is $\{x \in R\}$, range is $\{y \in R \mid y>0\}$
- if $b>1$, the greater the value, the faster the growth
- if $0<b<1$, the lesser the value, the faster the decay
- horizontal asymptote is $y=0$ (the $x$-axis)
- $y$-intercept is 1

First and second differences are related by a multiplication pattern.

## EXTRA QUESTIONS: Chapter 7 p. 526 \# 1-8

