MCF3MI

EXAM REVIEW

CHAPTER 7: Exponential Functions

- 1. Write as a single power. Express answers with positive exponents. DO NOT EVALUATE.
 - (a) $4^3 \times 4 \times 4^2$ (b) $5(5^3)$ (c) $\frac{(-4)^6(-4)^3}{((-4)^9)^2}$ (d) $\frac{3^4}{(3^2)^3}$ (e) $\frac{(20^{-1})^8}{20^2 20^6}$ (f) $(\frac{1}{9})^5 (\frac{1}{9})^{-3}$
- 2. Evaluate WITHOUT using a calculator.
 - (a) $256^{\frac{-5}{4}}$ (b) $\left(-\frac{1}{2}\right)^3 + 2^{-3}$ (c) $4^{-1} + 4^0 + 4^2$ (d) $16^{\frac{3}{2}}$ (e) $\left(\frac{27}{64}\right)^{\frac{-1}{3}}$ (f) $\sqrt[5]{-32}$
- 3. Complete the table.

Exponential Form	Radical Form	Evaluation of Expression
$81^{\frac{1}{4}}$		
$27^{\frac{4}{3}}$		
	∜7776	
4096 ^{0.75}		

4. Use your calculator to evaluate each expression. Express answers to two decimals.

(a)
$$256^{0.66}$$
 (b) $15^{\frac{-3}{2}}$ (c) $\sqrt[11]{3.7}$ (d) $\sqrt[4]{-99}$

5. Complete the table.

Function	Exponential Growth or Decay?	Initial Value (y-intercept)	Growth/Decay rate
$P(n) = 200(1 - 0.032)^n$			
$A(x) = (2)^x$			
$Q(x) = 0.85(0.77)^{x}$			

6. Calculate finite differences to classify each function as linear, quadratic, exponential or none of those.
(a)

)			((b)	
	x	у		x	у
	-4	47		-1	0.12
	-3	26		0	0.2
	-2	11		1	2
	-1	2		2	8
	0	-1		3	32

Conclusion _____

Conclusion

Formulas:

$$P = P_0(1+r)^n$$
 $P = P_0(1-r)^n$ $I(d) = I_0(1+r)^d$ $N(d) = N_0(1+r)^d$

- 7. Greg invests \$750 in a bond that pays 4.3% per year.
 - (a) Calculate, to the nearest penny, what Greg's total amount will be after 4 years. (Show your work)
 - (b) How much money did \$750 earn in four years?
 - (c) If Greg is planning to enter University in 2018, would his money have doubled by then? (Show your work).
- 8. A police diver is searching a harbour for stolen goods. The equation that models the intensity of light per metre of depth is $I(n) = 100(0.92)^n$.
 - (a) At what rate does the light diminish per metre?
 - (b) Determine the amount of sunlight the diver will have at a depth of 18 m, relative to the intensity at the surface.
- 9. Ryan purchases a used vehicle for \$11, 899. If the vehicle depreciates at a rate of 13% yearly, what will the car be worth, to the nearest dollar, in ten years? Show your work.
- 10. After being filled, a basketball loses 3.2% of its air every day. The initial amount of air in the ball was 840 cm^3
 - (a) Write an equation to model this situation.
 - (b) Determine the volume after 4 days.
 - (c) Will this model be valid after 6 weeks? Explain.
- 11. List 4 characteristics of an exponential function.

EXTRA QUESTIONS: Chapter 7 p. 526 # 1 - 8