Copyright © 2008 by Thomson Nelson

Lesson 6.6 Extra Practice Answers

1. a) $f(x) = \sin x$ has been stretched vertically by a factor of 28;

$$D = \{x \in \mathbf{R}\}; R = \{y \in \mathbf{R} | -28 \le y \le 28\}$$

b) $f(x) = \sin x$ has been compressed vertically by a factor of $\frac{3}{22}$ and reflected across the *x*-axis;

D =
$$\{x \in \mathbf{R}\}; R = \left\{ y \in \mathbf{R} \mid -\frac{3}{22} \le y \le \frac{3}{22} \right\}$$

c) $f(x) = \sin x$ has been stretched vertically by a factor of 21.5 and reflected across the *x*-axis;

$$D = \{x \in \mathbf{R}\}; R = \{y \in \mathbf{R} \mid -21.5 \le y \le 21.5\}$$

d) $f(x) = \sin x$ has been compressed vertically by a factor of $\frac{1}{18}$; $D = \{x \in \mathbf{R}\}$;

Rector of 18, B
$$= \{ y \in \mathbf{R} \mid -\frac{1}{18} \le y \le \frac{1}{18} \}$$

e) $f(x) = \sin x$ has been stretched vertically by a factor of 33; $D = \{x \in \mathbf{R}\};$

$$R = \{ y \in \mathbf{R} \, | \, -33 \le y \le 33 \}$$

f) $f(x) = \sin x$ has been stretched vertically by a factor of $\frac{9}{8}$ and reflected across the *x*-axis;

D =
$$\{x \in \mathbf{R}\}; R = \left\{ y \in \mathbf{R} \mid -\frac{9}{8} \le y \le \frac{9}{8} \right\}$$

2. a)
$$f(x) = -\frac{7}{8} \sin x$$

b)
$$f(x) = 23.5 \sin x$$

$$\mathbf{c}) f(x) = \frac{2}{3} \sin x$$

$$\mathbf{d}) f(x) = -26 \sin x$$

$$\mathbf{e)}\,f(x) = -\frac{10}{11}\sin x$$

$$\mathbf{f)} f(x) = 60 \sin x$$

3. a) $f(x) = -11 \sin x$; D = $\{x \in \mathbb{R}\}$; $\mathbb{R} = \{y \in \mathbb{R} | -11 \le y \le 11\}$

b)
$$f(x) = \frac{1}{5} \sin x$$
; D = $\{x \in \mathbf{R}\}$;
R = $\{y \in \mathbf{R} | -\frac{1}{5} \le y \le \frac{1}{5}\}$

c)
$$f(x) = 60 \sin x$$
; D = $\{x \in \mathbb{R}\}$;
 $\mathbb{R} = \{y \in \mathbb{R} \mid -60 \le y \le 60\}$

d)
$$f(x) = -\frac{3}{4}\sin x$$
; D = $\{x \in \mathbf{R}\}$;

$$R = \left\{ y \in \mathbf{R} \,|\, -\frac{3}{4} \le y \le \frac{3}{4} \right\}$$

4. a) amplitude: 20; period: 360° ; equation of the axis: y = -3; $D = \{x \in \mathbf{R}\}$; $R = \{y \in \mathbf{R} | -23 \le y \le 17\}$

b) amplitude: $\frac{17}{21}$; period: 360°; equation of the axis:

$$y = 1; D = \{x \in \mathbf{R}\};$$

 $R = \left\{ y \in \mathbf{R} | \frac{4}{21} \le y \le 1\frac{17}{21} \right\}$

c) amplitude: 23; period: 360° ; equation of the axis: y = -7; $D = \{x \in \mathbf{R}\}$; $R = \{y \in \mathbf{R} | -30 \le y \le 16\}$

d) amplitude: $\frac{1}{25}$; period: 360° ; equation of the axis:

$$y = -2$$
; D = $\{x \in \mathbf{R}\}$;
R = $\{y \in \mathbf{R} | -2\frac{1}{25} \le y \le -1\frac{24}{25}\}$

e) amplitude: 4; period: 360° ; equation of the axis: y = -75; $D = \{x \in \mathbf{R}\}$; $R = \{y \in \mathbf{R} | -79 \le y \le -71\}$

f) amplitude: $\frac{49}{50}$; period: 360° ; equation of the axis:

$$y = 4; D = \{x \in \mathbf{R}\};$$

$$R = \left\{ y \in \mathbf{R} \,|\, 3\frac{1}{50} \le y \le 4\frac{49}{50} \right\}$$

- **5. a)** Yes, the transformations have been applied in the correct order.
 - **b)** No, the transformations have not been applied in the correct order.
 - **c)** Yes, the transformations have been applied in the correct order.