Lesson 7.6 Extra Practice

STUDENT BOOK PAGES 425-432

1. a) For each of the following exponential models, identify the initial amount, the growth rate, and the number of growth periods.
i) $A(t)=45(1.23)^{11}$
ii) $N(t)=1000(1.10)^{4}$
iii) $P(t)=23(1.025)^{30}$
iv) $M(t)=50(2)^{8}$
b) Use a calculator to evaluate the equations in part (a) to three decimal places.
2. A bank pays 5% interest yearly on deposits. Suppose an account is opened at this bank with $\$ 1500$ in it.
a) Write a function $A(t)$ that tells how much money is in the account after t years.
b) How much money is in the account after 9 years?
c) What does $A(5.5)$ represent? Does this point make sense? Why or why not?
d) What does $A(-3)$ represent? Does this point make sense? Why or why not?
3. The population of a town can be modelled by the equation $P(t)=20(1.019)^{t}$, where $P(t)$ is the population in thousands and t is in years, where $t=$ corresponds to the year 2000.
a) What is the initial population of the town?
b) What is the annual growth rate of the town?
c) What is the population in the year 2015?
d) What does $P(5.5)$ represent? Does this point make sense? Why or why not?
e) What does $P(-3)$ represent? Does this point make sense? Why or why not?
4. Six hundred yeast cells in a bowl double in number every hour.
a) Write a function $N(t)$ that tells how many yeast cells are in the bowl after t hours.
b) Evaluate $N(10)$. What does this represent?
c) Graph the function from part (a).
d) Use the graph to estimate how much time has elapsed if there are 4000 cells in the bowl.
5. A colony of bacteria doubles in size every hour. Initially there are 32 bacteria in a dish that can contain 32768 bacteria.
a) Write a function $N(t)$ that tells how many bacteria are in the bowl after t hours.
b) After how many hours is the dish full?
c) Suppose the colony started with 64 bacteria instead of 32 . How much faster would the dish have filled up in this case?
6. A large city has a population of 1278443 in the year 2000 and an expected population of 3835329 in the year 2050 .
a) What is the growth rate per 50 -year period?
b) Write the function $P(t)$ that tells what the population will be after $t 50$-year periods.
c) What value of t corresponds to the year 2060? What will the population be in that year?
