1. Simplify.

$$
\left(-x^{2}\right)^{5}\left(2 x^{3}\right)^{6}
$$

(a) $\left(a b^{4}\right)\left(a^{-3} b^{4}\right)$
(b) $\begin{aligned} & =-x^{10} 2^{6} x^{18} \\ & =-x^{28}(64)\end{aligned}$
$=-x^{28}(64)$
(c) $\begin{aligned} & \left(x+5 y^{2}\right)\left(-2 x^{2}-3 y^{3}\right) \\ & =-2 x^{3}-3 x y^{3}-10 x^{2} y^{2}-15 y^{5}\end{aligned}$

$$
=-64 x^{28}
$$

2. (a) Graph $y=x^{2}-6 x+3$.

(b) vertex $=(3,-6)$
axis of symmetry: $x=3$
y-intercept: 3
x-intercept(s): (found using the Quad Formula)

$$
\begin{aligned}
x & =\frac{6+\sqrt{24}}{2} \quad \text { and } & x & =\frac{6-\sqrt{24}}{2} \\
& \doteq 5.44 & & \doteq 0.55
\end{aligned}
$$

direction of opening: up
3. State the domain and range for the following functions.
(a)

$$
\begin{aligned}
& D=\{x \in R\} \\
& R=\{y \in R \mid y \leq 1\}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& D=\{x \in R\} \\
& R=\{y \in R\}
\end{aligned}
$$

4. Determine whether the following relations are functions. State the domain and range.
(a)

NOT a function
$D=\{1,5,6\}$
$R=\{2,3\}$
(b)

NOT a function

$$
\begin{aligned}
& D=\{2,3,5\} \\
& R=\{0,3,8\}
\end{aligned}
$$

(c)

IS a function
$D=\{0,1,2,3\}$
$R=\{0,2,4,8\}$
5. If $f(x)=3(x-2)^{2}+1$, determine
(a) $\quad f(-1)$
(b) $f(x+1)$

$$
\begin{aligned}
f(x) & =3(x-2)^{2}+1 \\
f(-1) & =3(-1-2)^{2}+1 \\
& =3(-3)^{2}+1 \\
& =3(9)+1 \\
& =28
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=3(x-2)^{2}+1 \\
& \begin{aligned}
f(x+1) & =3(x+1-2)^{2}+1 \\
& =3(x-1)^{2}+1 \\
& =3\left(x^{2}-2 x+1\right)+1 \\
& =3 x^{2}-6 x+3+1 \\
& =3 x^{2}-6 x+4
\end{aligned}
\end{aligned}
$$

6. In words, describe the transformations to the graph $f(x)=x^{2}$ to get $g(x)$, if $g(x)=\frac{1}{2}(x+4)^{2}-3$.

The quadratic function $f(x)=x^{2}$ has been;

- horizontally translated 4 units to the left
- vertically compressed by a factor of $\frac{1}{2}$
- vertically translated down 3 units.

7. What conclusion can you make if the same value appears when calculating:
(a) the " 1 st difference"?

The function is a line (ie.... It is linear)
(b) the " 2 nd difference"?

The function is a quadratic.
8. A football is kicked from a height of 0.5 m . The height of the football is modeled by the the function $h(t)=-5 t^{2}+18 t+0.5$, where t is time in seconds and $h(t)$ is height in metres.
(a) Graph the function.

(b) State Domain and Range for this application in set notation.

$$
\begin{aligned}
D & =\{x \in R\} \\
R & =\{y \in R \mid y \leq 16.7\}
\end{aligned}
$$

(c) At what time does the football reach maximum height? Show your work.

$$
\begin{aligned}
h(t) & =-5 t^{2}+18 t+0.5 \\
& =-5\left(t^{2}-3.6 t+3.24\right)+0.5+16.2 \\
& =-5(t-1.8)^{2}+16.7
\end{aligned}
$$

The football reaches maximum height after 1.8 seconds.
(d) For how many seconds is the football in the air? Show your work.

$$
\begin{aligned}
& a=-5, b=18, c=0.5 \\
& t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& t=\frac{-18 \pm \sqrt{(-18)^{2}-4(-5)(0.5)}}{2(-5)} \\
& t=\frac{-18 \pm \sqrt{324+10}}{-10} \\
& t=\frac{-18+\sqrt{334}}{-10} \text { and } t=\frac{-18-\sqrt{334}}{-10} \\
& t=-0.03 \text { and } t=3.63
\end{aligned}
$$

The football is in the air for approx. 3.6 seconds.
9. Graph each of the following STEP BY STEP and then state domain and range.
(a) $y=\frac{1}{2}(x+3)^{2}$

(b) $g(x)=-3(x-1)^{2}+2$

(c) $y=-2$

10. Create a first- and second-difference table for the following data.

(b) What conclusion can be made from the first difference?

The function is NON-LINEAR.
(c) What conclusion can be made from the second difference?

The function is QUADRATIC.
11. A relation g is given by $g(x)=3 x^{2}+2 x-4$. Evaluate.
(a) $g(-2)$

$$
\begin{aligned}
g(x) & =3 x^{2}+2 x-4 \\
g(-2) & =3(-2)^{2}+2(-2)-4 \\
& =3(4)-4-4 \\
& =6
\end{aligned}
$$

(b) $g(m)$

$$
\begin{aligned}
& g(x)=3 x^{2}+2 x-4 \\
& g(m)=3 m^{2}+2 m-4
\end{aligned}
$$

(c) $g(4 a)$

$$
\begin{aligned}
g(x) & =3 x^{2}+2 x-4 \\
g(4 a) & =3(4 a)^{2}+2(4 a)-4 \\
& =3\left(16 a^{2}\right)+8 a-4 \\
& =48 a^{2}+8 a-4
\end{aligned}
$$

