HOLES!!!

Graph
$$g(x) = \frac{x^2 + 7x + 12}{x + 3}$$
 Just like our first unit! Factor first.

$$g(x) = \frac{(x+3)(x+4)}{(x+3)}$$

We have the restriction that $x \neq -3$, but since we cancel (x+3) we create a hole in the graph.

So, g(x) = (x + 4) is a linear function with a hole at x = -3

Additional Lesson Examples:

Additional Lesson Examples:

d)
$$m(x) = \frac{x-2}{x^2+4}$$
 $x^2+4\neq 0$
 x^2-4

no restrictions

ino asymptotes

did not reduce/cancel

no holes

$$y = \frac{x}{x^2}$$

Additional Homework Questions Assigned

MCR3UI

Graphs of Rational Functions

Determine any Vertical Asymptotes or Holes for the following functions. Graph each function.

1.
$$f(x) = \frac{x^2 - 2x - 3}{x - 3}$$

$$2. \ f(x) = \frac{x^2 + 2x}{x^3 - 4x}$$

3.
$$f(x) = \frac{x^3 - x^2 + 2x - 2}{x - 1}$$

Homework Question corrected

MCR3UIGraphs of Rational Functions.pdf