MCR 3UI

3.4 Operations with Radicals

Date:

Recall: When working with radicals all answers must be in lowest terms. Look for factors of the radicand that are perfect squares.

Ex.1 Simplify

a)
$$\sqrt{50}$$

a)
$$\sqrt{50}$$
 b) $5\sqrt{45}$

Ex.2 Compare

$$4\sqrt{5}$$
 and $3\sqrt{10}$

Note: Many rules are similar to algebra:

Ex.3 Simplify

a)
$$\sqrt{6} \times \sqrt{3}$$

a)
$$\sqrt{6} \times \sqrt{3}$$
 b) $\left(-2\sqrt{7}\right)\left(3\sqrt{7}\right)$

Ex.4 Simplify

a)
$$\sqrt{2} + \sqrt{2} + \sqrt{2}$$

$$x + x + x$$

b)
$$2\sqrt{3} + 5\sqrt{3}$$

$$2x + 5x$$

c)
$$2\sqrt{3} + 3\sqrt{7}$$

$$2x + 3y$$

Summarizing some rules:

$$\sqrt{a} + \sqrt{a}$$

$$\sqrt{a} \times \sqrt{a}$$

$$\sqrt{\frac{a}{b}}$$

$$\sqrt{a} \times \sqrt{b}$$

Ex.5 Simplify

a)
$$3(4-\sqrt{6})$$

a)
$$3(4-\sqrt{6})$$
 b) $(2-3\sqrt{5})(6+\sqrt{5})$

c)
$$\sqrt{\frac{2}{9}}$$

Ex.5 (cont'd) Simplify

d) $\sqrt{50} + \sqrt{27} - \sqrt{72} + 2\sqrt{12}$

Note: The textbook gives answers with the denominator rationalized. This means that there is not a radical sign in the denominator. In order to accomplish this, just multiply by an equivalent of 1.

Simplify Ex.6

You try:

a)
$$\frac{\sqrt{7}}{\sqrt{3}}$$

$$= \frac{\sqrt{7}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

$$= \frac{\sqrt{21}}{3}$$

b)
$$\frac{2\sqrt{3}}{\sqrt{20}}$$
 c) $\frac{3\sqrt{2}}{2\sqrt{27}}$ d) $\frac{\sqrt{6}}{2\sqrt{18}}$

$$c) \quad \frac{3\sqrt{2}}{2\sqrt{27}}$$

$$d) \quad \frac{\sqrt{6}}{2\sqrt{18}}$$