\qquad
Recall: When working with radicals all answers must be in lowest terms.
Look for factors of the radicand that are perfect squares.

Ex. $1 \quad$ Simplify
a) $\sqrt{50}$
b) $5 \sqrt{45}$

Ex. 2 Compare
$4 \sqrt{5}$ and $3 \sqrt{10}$

Note: Many rules are similar to algebra:

Ex. 3 Simplify

a) $\begin{array}{ll}\sqrt{6} \times \sqrt{3} & \text { b) }(-2 \sqrt{7})(3 \sqrt{7})\end{array}$

Ex. 4 Simplify
a) $\sqrt{2}+\sqrt{2}+\sqrt{2} \quad x+x+x$
b) $2 \sqrt{3}+5 \sqrt{3}$
$2 x+5 x$
c) $2 \sqrt{3}+3 \sqrt{7}$
$2 x+3 y$

Summarizing some rules:
$\sqrt{a}+\sqrt{a}$
$\sqrt{a} \times \sqrt{a}$
$\sqrt{\frac{a}{b}}$
$\sqrt{a} \times \sqrt{b}$

Ex. 5 Simplify
a) $3(4-\sqrt{6})$
b) $(2-3 \sqrt{5})(6+\sqrt{5})$
c) $\sqrt{\frac{2}{9}}$

Ex. 5 (cont'd) Simplify
d) $\sqrt{50}+\sqrt{27}-\sqrt{72}+2 \sqrt{12}$

Note: The textbook gives answers with the denominator rationalized. This means that there is not a radical sign in the denominator. In order to accomplish this, just multiply by an equivalent of 1 .

Ex. 6 Simplify
a) $\frac{\sqrt{7}}{\sqrt{3}}$
b) $\frac{2 \sqrt{3}}{\sqrt{20}}$
$=\frac{\sqrt{7}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
$=\frac{\sqrt{21}}{3}$

You try:
c) $\begin{array}{ll}\frac{3 \sqrt{2}}{2 \sqrt{27}} & \text { d) } \frac{\sqrt{6}}{2 \sqrt{18}}\end{array}$

