Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) classify the nature of the roots of a quadratic equation using the discriminant.
- b) use the discriminant in problem solving situations.

Last day's work:

pp. 177-178 #1ac, 2ac, 4ace, 5, 6ac, 9, 10, 13

3.6 The Zeros of a Quadratic Function

Ex. 1: Find the zeros of the following using the quadratic formula.

a)
$$f(x) = 2x^2 - 5x - 3$$

a)
$$f(x) = 2x^2 - 5x - 3$$
 b) $g(x) = 2x^2 - 12x + 18$ c) $h(x) = 2x^2 - 4x + 5$

c)
$$h(x) = 2x^2 - 4x + 5$$

The Discriminant

For
$$ax^2 + bx + c = 0$$
 or for $f(x) = ax^2 + bx + c$
If $b^2 - 4ac > 0$, there are 2 solutions/zeros.
If $b^2 - 4ac = 0$, there is 1 solution/zeros.
If $b^2 - 4ac < 0$, there are no solutions/zeros.

Ex. 2: Determine the number of zeros for
$$f(x) = -3x^2 + 6x - 3$$

What is the "nature of the roots" for $0 = -3x^2 + 6x - 3$?

Ex. 3: For what values of k will the function $f(x) = 2x^2 + 4x + k$ have:

a) 1 zero?

b) 2 zeros?

c) no zeros?

Inequality Rules?

Ex. 4: For what value(s) of k will the function $g(x) = kx^2 + 8x + k$ have no real roots?

$$b^2 - 4ac < 0$$
$$8^2 - 4(k)(k) < 0$$
$$64 - 4k^2 < 0$$

 $-4(k^2 - 16) < 0$
-4(k+4)(k-4) < 0

Think: for LS <0, then both brackets must be positive. So, what value(s) of k will make the brackets positive.

For k+4>0 then k>-4For k-4>0, then k>4

OR For k+4<0 then k<-4
For k-4<0 then k<4

Since both brackets have to be positive or negative AT THE SAME TIME, then the value(s) of k have to "work" for both brackets. This is easiest to see on a number line.

Both pos:

Both neg:

 \therefore if k>4 or k<-4, the function will have no real roots.

Are there any Homework Questions you would like to see on the board?

Last day's work:

pp. 177-178 #1ac, 2ac, 4ace, 5, 6ac, 9, 10, 13

Today's Homework Practice includes:

pp. 185-186 #1bde, 3ac, 4ac, 6, 7 [14,17,18]