1. Determine the maximum or minimum value of each quadratic function.

a)
$$f(x) = x^2 - 6x + 2$$

b)
$$f(x) = 2(x-4)(x+6)$$

2. Graph each function.

a)
$$f(x) = -3(x-2)^2 + 5$$

b)
$$f(x) = 2(x+4)(x-6)$$

- i) For each function, state the vertex, the equation of the axis of symmetry, and the domain and range.
- ii) Express each function in standard form.
- 3. The sum of two numbers is 16. What is the largest possible product between these numbers?
- 4. Graph $f(x) = -\sqrt{x+3}$ and determine
 - a) the domain and range of f(x).
 - b) the equation of f^{-1}
- 5. a) Determine the equation of the inverse of the quadratic function $f(x) = x^2 4x + 3$.
 - b) State the domain and range of f(x) and its inverse.
 - c) Sketch the graphs of f(x) and its inverse.
- 6. The revenue for a business is modelled by the function $R(x) = -2.8(x-10)^2 + 15$, where x is the number of items sold, in thousands, and R(x) is the revenue in thousands of dollars.
 - a) Express the number sold in terms of the revenue.
 - b) Almost all linear functions have an inverse that is a function, but quadratic functions do not. Explain why.
- 7. The profit function for a business is given by the equation $P(x) = -4x^2 + 16x 7$, where x is the number of items sold, in thousands, and P(x) is dollars in thousands. Calculate the maximum profit and how many items must be sold to achieve it.
- 8. The cost per hour of running an assembly line in a manufacturing plant is a function of the number of items produced per hour. The cost function is $C(x) = 0.3x^2 1.2x + 2$, where C(x) is the cost per hour in thousands of dollars, and x is the number of items produced per hour, in thousands. Determine the most economical production level.