1.7 Applications Involving Exponential Functions (Fall	2015)-f15.notebookNovember 05, 2015
Today's Learning Goal(s):	Date:
By the end of the class, I will be able to:	

a) use exponential functions to model exponential growth and decay.

Last day's work: pp. 251-253 #1 – 5, 9, 10 [12 – 14] (text quesons on following screens)

4.7 Applications Involving Exponential Functions Date: 1/10/. 5 // 5

Ex.1 You invest \$1000 at 8% /a compounded annually. How much will you have after 20 years?

Ex.2 A superball loses 10% of its height after each bounce. It was dropped from 12 *m*.

Model the bounce height with a decay function.

Initial Amount 12

Decay Rate 0.1

Decay Factor 1-0.1

$$= 0.9$$
 $H = 12(0.90)^n$

Initial Amount

Decay Factor

Each bounce is 90% of the previous bounce.

4.7 Applications Involving Exponential Functions (Fall 2015)-f15.notebookNovember 05, 2015

The function $f(x) = a(b^x)$ can be used as a model to solve problems involving exponential growth and decay.

$$f(x) = a$$
 (bx) Where a is the initial value,
b is the growth factor and
x is the number of compounding periods.

Ex.3 A hockey card is purchased in 1990 for \$5.00.

The value increases by 6% each year.

Write an equation and determine it's value in 2011.

Write an equation and determine it's value in 2011.

$$f(x) = 5(1.0b)^{21} \qquad \begin{array}{c} h = 20(1-(990))^{21} \\ = 21 \end{array}$$

$$= 16.997$$

$$= $17.00$$

4 7	Applications	lana and laudhan ar Franc	4! . 1 🗁	/ /	C - II 004 E\			^ F	0045
4 /	Anniicatione	INVAIVINA EYR	NANDNII II 🗕	IINCTIANE II	Fコロ フロイち	LTIS NOTONO	10KNOVAMBAR	115	71175
7.1	ADDIIGALIOIIS		JOHICHHAI I (นเเษแบบเอ เ	ı alı 20 i Ji		JONIAOACIIIDEI	vv.	2013

Ex.4 In 1980 the population of the town of St. Albert, Alberta was 20 000. If the town grows at a rate of 2% a year, what was the population in 2014?

 $A = 200000 (1.02)^{34}$ = 39213.5 = 39213 is the population. 4.7 Applications Involving Exponential Functions (Fall 2015)-f15.notebookNovember 05, 2015

There are growth and decay applications that involve doubling times or half-lives. The formula can be altered to:

$$N(t) = N_o(2)^{\frac{t}{d}} \leftarrow \text{total time}$$

$$N(t) = N_o \left(\frac{1}{2}\right)^{\frac{t}{d}} \leftarrow \text{ total time}$$
= half-life

Ex.5 A biology experiment starts with 1000 cells. After 4 hours the count is estimated to be 256 000. What is the doubling period for the cells?

$$N(t) = N_0(2)^{\frac{1}{d}}$$

$$256000 = (000(2)^{\frac{1}{d}})^{\frac{1}{d}}$$

$$\frac{256000}{1000(2)^{\frac{1}{d}}} = 0.5 \quad 4 = 0.5$$

$$\frac{1}{2} = 0.5 \quad 4 = 0.5$$

Are there any Homework Questions you would like	e to see on the board		
Last day's work: pp. 251-253 #1 – 5, 9, 10 [12 – 14] (text quesons on following screens)			
	1		
Today's Homework Practice includes:			
pp. 261-262 # 1 – 8			

4.7 Applications Involving Exponential Functions (Fall 2015)-f15.notebookNovember 05, 2015