Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) explain the relationship between the ratios of an angle in standard position, and the related acute angle (RAA).
- b) determine the trig ratios of angles between 00 and 3600.

Last day's work: p. 292 #1 – 4

pp. 299-300 #(1 – 5)ac

(3 screens away)

Defining an angle in "standard position". Explain: $0^{\circ} \le \theta \le 360^{\circ}$

 θ = Principal Angle

 β = Related Acute Angle (RAA)

Note: In Quadrant I: $\theta = \beta$

Complete/Memorize this Chart!

θ	30°	45°	60°
$\sin heta$			
$\cos \theta$			
an heta			

Memorize this Chart!

θ	30°	45°	60°
$\sin \theta$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}} \frac{\text{or } \sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
$\cos \theta$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}} \frac{\text{or } \sqrt{2}}{2}$	$\frac{1}{2}$
an heta	$\frac{1}{\sqrt{3}} \operatorname{or} \frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

Are there any Homework Questions you would like to see on the board? Extra STUFF on Website!

Friday's work: pp. 286-287 # 1 – 9 [13 – 15]

Asked for yesterday: p. 287 # 8, 9

Last day's work: p. 292 #1 - 4 3 a , 2, 16

pp. 299-300 #(1 – 5)ac **L/QC**

Today's Homework Practice includes:

pp. 299-300 #(1 - 5)bd

Standard Posion Wkst#1

1cd, 2bc, 6, 7a, 9 8-3

(· 2 8 7 8. A 5 m stepladder propped against a classroom wall forms an angle of 30° with the wall. Exactly how far is the top of the ladder from the floor? Express your answer in radical form. What assumption did you make?

9. Show that
$$\tan 30^{\circ} + \frac{1}{\tan 30^{\circ}} = \frac{1}{\sin 30^{\circ} \cos 30^{\circ}}$$
.

$$LS = tom30^{\circ} + \frac{1}{tom30^{\circ}}$$

$$= \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}$$

$$= \frac{1}{\sqrt{3}} + \frac{3}{\sqrt{3}}$$

$$= \frac{1}{\sqrt{3}} + \frac{3}{\sqrt{3}} + \frac{3}{\sqrt{3}}$$

$$= \frac{1}{\sqrt{3}} + \frac{3}{\sqrt{3}} + \frac{$$

$$RS = \frac{1}{5h30^{\circ} \cos 30^{\circ}}$$

$$= \frac{1}{(\frac{1}{3})(\frac{\sqrt{3}}{3})}$$

$$= \frac{1}{\sqrt{3}}$$

$$= \frac{4}{\sqrt{3}}$$

$$= \frac{4}{\sqrt{3}}$$

- 1. State all the angles between 0° and 360° that make each equation true.
 - a) $\sin 45^{\circ} = \sin 135^{\circ}$
 - **b**) $\cos = -\cos (-60^{\circ})$

- 2. Using the special triangles from Lesson 5.2, sketch two angles in the Cartesian plane that have the same value for each given trigonometric ratio.
 - a) sine
- b) cosine
- c) tangent

- 3. Sylvie drew a special triangle in quadrant 3 and determined that $\tan (180^{\circ} + \theta) = 1.$
 - a) What is the value of angle θ ?

I determined that
$$fan B = 1$$

$$\therefore \beta = 45^{\circ}$$

$$\vdots \quad 0 = 235^{\circ}$$

- 4. Use the related acute angle to state an equivalent expression.
 - a) sin 160°
- b) $\cos 300^{\circ}$
- c) $\tan 110^{\circ}$
- d) sin 350°

5

= Sin 20°

$$5h6 = \frac{4}{5}$$

 $5in6 = \frac{7}{558}$
 $= 0.919$
 $= 0.92$