6.4 Exp	loring Transformations	of Sinusoidal Functions	(Fall 2015))-f15.not @cccel mber 04	I, 2015
---------	------------------------	-------------------------	-------------	---------------------------------	---------

	1	1	-	•	\sim 1	<i>'</i>	\
1	\sim	OTT		0022110	-00		١.
	()(14 V		Learning	L IOAT		•
_		Lu y	.		Our	. ()	, .
		_				\	_

Date:			

By the end of the class, I will be able to:

a) determine the how transformation affect the sine and cosine curves.

"Show What You Know" 6.1 is Today

Last day's work: p. 363 #8

pp. 370-372 #1 – <u>8,</u> 13 [15]

- p. 372 # 8. The diameter of a car's tire is 52 cm. While the car is being driven, the tire picks up a nail.
 - a) Draw a graph of the height of the nail above the ground in terms of the distance the car has travelled since the tire picked up the nail.
 - b) How high above the ground will the nail be after the car has travelled 0.1 km?
 - c) How far will the car have travelled when the nail reaches a height of 20 cm above the ground for the fifth time?
 - d) What assumption must you make concerning the driver's habits for the function to give an accurate height?

(=2111 =211(26) = 163.36

b) $0.1 \text{ km} = 100 \text{ m} = 10\,000 \text{ cm}$. Since the car travels 163.36 cm for each revolution of the tire, after it has travelled 10 000 cm, the tire has made approximately 10 000 ÷ 163.36 or 61.21 revolutions. Since the height of the nail above the ground is 0 cm after 1 revolution, it is also 0 cm above the ground after 61 revolutions. Therefore, the height of the nail above the ground after 61.21 revolutions is the same as it is after 61.21 - 61 or 0.21 revolutions. During 1 revolution, the distance travelled is 163.36 cm, so during 0.21 revolutions, the distance traveled is 163.36×0.21 or 34.31 cm. From the graph in part a, the height of the nail above the ground after the car has travelled 34.31 cm is approximately 29 cm.

- c) From the graph, when the nail reaches a height of 20 cm above the ground for the fifth time, the car will have travelled approximately 360 cm.
- d) For the function to give an accurate height, you must assume that the driver doesn't spin the wheels.

6.4 Exploring Transformations of Sinusoidal Functions Date: Dec. 4/15

EXPLORE the Math: pp. 377-378 A-U

Part 1: The Graphs of $y = a \sin x$ and $y = a \cos x$.

Part 2: The Graphs of $y = \sin x + c$ and $y = \cos x + c$.

Part 3: The Graphs of $y = \sin kx$ and $y = \cos kx$.

Part 4: The Graphs of $y = \sin(x-d)$ and $y = \cos(x-d)$.

Summary of $y = a \sin(k(x-d)) + c$ and $y = a \cos(k(x-d)) + c$ The transformations that have occurred to $y = \sin x$ and $y = \cos x$ are:

6.4 Exploring	Transformations	of Sinusoidal Functions	(Fall 2015)-f15.noteDeccelmber 04,	2015
---------------	------------------------	-------------------------	------------	--------------------------	------

Are there any Homework Questions you would like to see on the board?

Last day's work: p. 363 #8

pp. 370-372 #1 - 8, 13 [15]

Today's Homework Practice includes:

pp. 377-378 A – U

p. 379 #1 – 3

6.2 SineTracer.gsp