Chapter 6 Review Extra Practice

STUDENT BOOK PAGES 403-405

1. Sketch the graph of a periodic function with a period of 45 , an amplitude of 3 , and an equation of the axis of $y=-4.5$.
2. Determine the coordinates of each of the following points.
a) the point resulting from a rotation of 72° about $(0,0)$ from the point $\left(\frac{1}{4}, 0\right)$
b) the point resulting from a rotation of 8° about
$(0,0)$ from the point $(16,0)$
c) the point resulting from a rotation of 59° about (0 ,

0) from the point $(6,0)$
d) the point resulting from a rotation of 81° about
$(0,0)$ from the point $\left(\frac{1}{2}, 0\right)$
3. State the transformation that has occurred to the graph of either $y=\sin x$ or $y=\cos x$ to result in each of the following sinusoidal functions.
a) $y=\cos \left(x-71^{\circ}\right)$
b) $y=\sin \left(\frac{1}{25} x\right)$
c) $y=19 \cos x$
d) $y=\sin x-\frac{1}{11}$
e) $y=-\cos x$
f) $y=\sin 50 x$
4. Each of the following functions starts at $x=0^{\circ}$ and finishes after five complete cycles. State the period, amplitude, equation of the axis, domain, and range of each.
a) $h(x)=17 \cos \left(9 x-18^{\circ}\right)+13$
b) $j(x)=-\frac{3}{10} \sin \left(2\left(x-12^{\circ}\right)\right)-4$
c) $h(x)=33 \cos \left(\frac{1}{4}\left(x+20^{\circ}\right)\right)-61$
d) $j(x)=-\sin \left(12 x-3^{\circ}\right)+32$
e) $h(x)=2 \cos \left(\frac{1}{6} x+42^{\circ}\right)-70$
f) $j(x)=8.5 \sin \left(3 x-9.5^{\circ}\right)+3.5$
5. Determine the equation for each of the following sinusoidal functions.
a) the function has an amplitude of 15.5 , a period of 90°, and a maximum at $(0,19)$
b) the function has an amplitude of 7 , a period of 20°, and a minimum at $(0,-3.5)$
c) the function has an amplitude of 11 , a period of 1°, and a maximum at $(0,226)$
d) the function has an amplitude of $\frac{1}{50}$, a period of 3600°, and a minimum at $\left(0, \frac{1}{25}\right)$
6. Edna is an astronaut undergoing training in a human centrifuge, and a doorway is located directly north of the centrifuge. The following graph shows Edna's distance south of the doorway as a function of time once the centrifuge has reached full speed.

a) What is the equation of the axis of the function?
b) What is the amplitude of the function, and what does it represent in this situation?
c) What is the period of the function, and what does it represent in this situation?
d) What is the range of the function?
e) Determine the equation of the sinusoidal function.
f) What is Edna's distance south of the doorway at $t=5 \mathrm{~s}$? How about at $t=30.8 \mathrm{~s}$?

