Lesson 6.5 Extra Practice Answers

- a) horizontal translation of 68° to the left; reflection in the *x*-axis; vertical stretch by a factor of 7; vertical translation of 12 units down
 - **b**) horizontal compression by a factor of $\frac{1}{3}$; horizontal translation of 19° to the right; vertical compression by a factor of $\frac{1}{3}$
 - c) horizontal stretch by a factor of 15; horizontal translation of 88° to the left; vertical translation of 6 units up
 - **d)** horizontal translation of 34° to the right; vertical stretch by a factor of 8; vertical translation of 22 units down
 - e) horizontal stretch by a factor of 7; horizontal translation of 8° to the left; reflection in the *x*-axis; vertical stretch by a factor of 17
 - **f**) horizontal compression by a factor of $\frac{1}{41}$; horizontal translation of 31° to the right; reflection in the *x*-axis; vertical translation of 14 units up

2. a) ii

- **b**) iii
- **c)** i
- **d)** iv
- **3. a)** 9° to the left
 - **b)** 30° to the right
 - **c)** 160° to the left
 - **d)** 45° to the right
 - e) 20° to the right
 - **f**) 90° to the left

- **4. a)** period: 180°; amplitude: 29; equation of the axis: f = -3; D = { $x \in \mathbf{R} \mid 0 \le x \le 720$ }; R = { $f \in \mathbf{R} \mid -32 \le f \le 26$ }
 - **b**) period: 36°; amplitude: $\frac{1}{20}$; equation of the axis: g = 9; D = { $x \in \mathbf{R} \mid 0 \le x \le 144$ }; R = {{ $g \in \mathbf{R} \mid 8\frac{19}{20} \le g \le 9\frac{1}{20}$ }
 - c) period: 1800°; amplitude: 6; equation of the axis: f = 55; D = { $x \in \mathbf{R} \mid 0 \le x \le 7200$ }; R = { $f \in \mathbf{R} \mid 49 \le f \le 61$ }
 - **d**) period: 20°; amplitude: 1; equation of the axis: g = -12; D = { $x \in \mathbf{R} \mid 0 \le x \le 80$ }; R = { $g \in \mathbf{R} \mid -13 \le g \le -11$ }
 - e) period: 2880°; amplitude: 3; equation of the axis: f = 4; D = { $x \in \mathbf{R} \mid 0 \le x \le 11520$ }; R = { $f \in \mathbf{R} \mid 1 \le f \le 7$ }
 - f) period: 72°; amplitude: 0.5; equation of the axis: g = -1.5; D = { $x \in \mathbf{R} \mid 0 \le x \le 288$ }; R = { $g \in \mathbf{R} \mid -2 \le g \le -1$ }
- **5. a)** No
 - **b**) Yes
 - c) Yes
 - **d)** No