## Lesson 6.5 Extra Practice

## STUDENT BOOK PAGES 380-385

1. State the transformations in the correct order that should be applied to the graph of $f(x)=\sin x$ to produce each of the following sinusoidal functions.
a) $f(x)=-7 \sin \left(x+68^{\circ}\right)-12$
b) $f(x)=\frac{1}{3} \sin \left(3\left(x-19^{\circ}\right)\right)$
c) $f(x)=\sin \left(\frac{1}{15}\left(x+88^{\circ}\right)\right)+6$
d) $f(x)=8 \sin \left(x-34^{\circ}\right)-22$
e) $f(x)=-17 \sin \left(\frac{1}{7}\left(x+8^{\circ}\right)\right)$
f) $f(x)=-\sin \left(41\left(x-31^{\circ}\right)\right)+14$
2. Match each of the following graphs to its corresponding function.
a)

b)

c)

d)

i) $f(x)=\cos \left(2 x+60^{\circ}\right)$
ii) $f(x)=\cos \left(5 x+30^{\circ}\right)$
iii) $f(x)=\cos \left(4 x+60^{\circ}\right)$
iv) $f(x)=\cos \left(3 x+30^{\circ}\right)$
3. After applying the necessary horizontal stretch or compression to the graph of $g(x)=\sin x$, what is the horizontal translation required to complete the transformation for each of the following functions?
a) $g(x)=\sin \left(8 x+72^{\circ}\right)$
b) $g(x)=\sin \left(15\left(x-30^{\circ}\right)\right)$
c) $g(x)=\sin \left(0.25 x+40^{\circ}\right)$
d) $g(x)=\sin \left(\frac{1}{2}\left(x-45^{\circ}\right)\right)$
e) $g(x)=\sin \left(18 x-360^{\circ}\right)$
f) $g(x)=\sin \left(2\left(x+90^{\circ}\right)\right)$
4. Each of the following functions starts at $x=0^{\circ}$ and finishes after 4 complete cycles. State the period, amplitude, equation of the axis, domain, and range of each.
a) $f(x)=-29 \sin \left(2 x+34^{\circ}\right)-3$
b) $g(x)=\frac{1}{20} \cos \left(10\left(x+1^{\circ}\right)\right)+9$
c) $f(x)=6 \sin \left(\frac{1}{5}\left(x-50^{\circ}\right)\right)+55$
d) $g(x)=-\cos \left(18 x+54^{\circ}\right)-12$
e) $f(x)=3 \sin \left(\frac{1}{8} x-32^{\circ}\right)+4$
f) $g(x)=0.5 \cos \left(5 x+4.5^{\circ}\right)-1.5$
5. Determine whether or not the following transformations to the graph of the function $g(x)=\cos x$ are in the correct order.
a) Move $g(x) 17.5$ units up. Vertically stretch $g(x)$ by a factor of 3.5.
b) Horizontally compress $g(x)$ by a factor of $\frac{1}{14}$. Move $g(x) 59^{\circ}$ to the left.
c) Move $g(x) 16$ units down. Horizontally stretch $g(x)$ by a factor of 21 .
d) Move $g(x) 17^{\circ}$ to the right. Horizontally stretch $g(x)$ by a factor of 12 .
