\qquad

1. Simplify the following.
a) $\sqrt{8}+\sqrt{12}-\sqrt{20}$

$$
\text { b) } \begin{aligned}
\frac{16-\sqrt{20}}{6 \sqrt{5}} \\
=\frac{16-2 \sqrt{5}}{6 \sqrt{5}}
\end{aligned} \quad<=\frac{2(8-\sqrt{5})}{6 \sqrt{5}}
$$

2. Determine the equation that correctly identifies each graph.

$$
-5=a(0+4)^{2}+3
$$

$-8=16 a$

$$
-\frac{1}{2}=a
$$

$$
\therefore y=-\frac{1}{2}(x+4)^{2}+3
$$

3. For the equation $f(x)=-3 x^{2}-x+2$:
a) Determine $f(-1)$.

$$
\begin{aligned}
& \text { Determine } f(-1) . \\
& f(-1)=-3(-1)^{2}-(-1)+2
\end{aligned}>f(-1)=0
$$

$$
\begin{aligned}
& y=a \sqrt{x+2}-4 \\
& 0=a \sqrt{2+2}-4 \\
& 4=a(\sqrt{4}) \quad, \therefore y=2 \sqrt{x+2}-1
\end{aligned}
$$

b) Determine the value of x when $f(x)=-8$.

$$
\begin{aligned}
-8 & =-3 x^{2}-x+2 \\
0 & =-3 x^{2}-x+10
\end{aligned} \quad \int 0=-(3 x-5)(x+2)
$$

4. State the Domain and Range for each of the following functions.
a)

$$
\begin{aligned}
& y=-2 \sqrt{3 x+3}-.5 \\
& y=-2 \sqrt{3(x+1)}-\frac{1}{2} \\
& D=\{x \in \mathbb{R} \mid x \geq-1\} \\
& R=\left\{y \in \mathbb{R} \left\lvert\, y \leq-\frac{1}{2}\right.\right\}
\end{aligned}
$$

b)

$$
\begin{aligned}
& y=-\frac{1}{2}(x+3)^{2}+2 \\
& D=\{x \in \mathbb{R}\} \\
& R=\{y \in \mathbb{R} \mid y \leq 2\}
\end{aligned}
$$

5. For the function $f(x)=\sqrt{(x-3)}+1$, determine:
a) the Domain

$$
D=\{x \in \mathbb{R} \mid x \geq 3\}
$$

b) the Range

$$
R=\{y \in R \mid y \geq 1\}
$$

c) the equation of its inverse

$$
\begin{aligned}
& x=\sqrt{y-3}+1 \\
& (x-1)^{2}=y-3
\end{aligned} \longrightarrow \begin{aligned}
& (x-1)^{2}+3=y, x \geq 1 \\
& \therefore f^{-1}(x)=(x-1)^{2}+3
\end{aligned}
$$ on', want 1 arm of the parabola<'.

d) If its inverse is also a function, write the fyhction using proper form. If not, explain why not.
6. For the graph below:
a) Describe all transformations to the graph of $y=\frac{1}{x}$
ht. right 2
vt down 3
b) Determine the equation (s) of any asymptotes).

$$
y=\frac{1}{x-2}-3 \Leftarrow e q^{\prime} \cdot f_{f n}
$$

$$
x=2
$$

$$
\left\{\begin{array}{l}
x=2 \\
y=-3
\end{array}\right.
$$

1. a) Determine the equation that correctly identifies each graph.

$$
y=-\frac{1}{2}(x+4)^{2}+3
$$

b) The discriminant of both of the above must be \qquad $b^{2}-4 a c>0$
2. Two numbers have a sum of 16. Determine the numbers if their product is a maximum.

Let x and y be the numbers

$$
\begin{aligned}
x+y=16 & \text { Product }
\end{aligned}=x(16-x) 8 \text { y=16-x } \quad \begin{aligned}
y & =-x^{2}+16 x \\
& =-\left(x^{2}-16 x+64\right)+64 \\
& =-(x-8)^{2}+64
\end{aligned}
$$

max is 64
which occurs when $x=8$
\therefore \#s are
8 and 8
3. The perimeter of a rectangular yard is 480 m . Determine the dimensions if the area is $14,000 \mathrm{~m}^{2}$.

$$
\begin{array}{cc}
P=480 & \omega=14000 \\
& 480=2 l+2 \omega \\
& 480-2 \omega=2 l \\
& 240-\omega=l
\end{array}
$$

$$
\begin{aligned}
& A=l(\omega) \\
& \begin{aligned}
14000 & =(240-\omega)(\omega) \\
0 & =-\omega^{2}+240 \omega-14000
\end{aligned} \quad\left\{\begin{array}{r}
0=(\omega-100)(\omega-14 \\
\omega=100 \\
\omega=140
\end{array}\right. \\
& \therefore \text { Dimension } \\
& \text { are } 100 \mathrm{~m} \times 140 \mathrm{~m} \text {. }
\end{aligned}
$$

4. A species of bacteria has a population of 3200 at 11:00 A.M. It triples every 8 hours. The function that models the growth of the population P at any time t, in hours, is given by: $P(t)=3200(3)^{\frac{1}{8}}$
a) Why is the exponent $\frac{t}{8}$? \qquad

- Want to know how mam tripling periods there are
b) Why is the base 3 ? \qquad
c) What does the 3200 relate to? \qquad
d) Determine the y-intercept of the function. \qquad 3200
e) Determine the population at 11:00 P.M. on the following day.

$$
\begin{aligned}
t=36 \quad P(36) & =3200(3)^{36 / 8} \quad \therefore \text { thereare } 448947 \text { bacteria } \\
& =448947.56 \quad \text { at } 11 \text { pm. }
\end{aligned}
$$

f) At what time will the population reach 28800 ?

$$
\begin{aligned}
28800 & =3200(3)^{t / 8} \\
9 & =3^{t / 8} \\
3^{2} & =3^{t / 8} \\
2 & =t / 8
\end{aligned} \quad p t=16
$$

\therefore at 3 pm the mat day the population in 28800
5. The half-life of Tylenol is 6 hours. If I take 500 mg at 9:00 A.M., how much will be left in my system after 24 hours?

$$
\begin{aligned}
P(t) & =500\left(\frac{1}{2}\right)^{t / 6} \\
P(24) & =500\left(\frac{1}{2}\right)^{24 / 6} \\
& =31.25
\end{aligned}
$$

$\therefore 24 \mathrm{hes}$ later thee is 31.25 mg in your system.
\qquad

1. The 'Knock-Em-Over' carnival game requires participants to throw a ball at a pile of cans and attempt to knock over each can. At the 'Beginner Levee', the cans are stacked 3 rows high, as shown:

At the 'Super-Advanced Level', the cans are piled 15 rows high!
a) Express the total number of cans required for 15 rows as a series, and evaluate.
$n=15$

$$
\begin{aligned}
S_{15} & =\frac{15}{2}[2(1)+(15-1)(1)] \\
& =\frac{15}{2}(2+14) \\
& =\frac{15}{2}(16)
\end{aligned}
$$

$$
=120
$$

As the level of difficulty increases, so does the number of points that a player can win. At the beginner level (Level 1) a player who wins gets 5 points. Level 2 is worth 10 points, Level 3 is worth 20 points, Level 4 is worth 40 points, etc.
b) Determine the number of points a player would win if successful at Level 10.
$a=5 \quad t_{10}=5(2)^{10-1}$
$r=2 \quad \therefore \quad \therefore$ they would earn 2560 point
$n=10$
$=2560$
c) A player starts at Level 1 and completes all the way to Level 10 . Express the total number of points earned as a series, and evaluate.

$$
\begin{aligned}
& a=5 \\
& r=2 \\
& n=10
\end{aligned}
$$

$$
\begin{aligned}
S_{10} & =\frac{5\left(2^{10}-1\right)}{2-1} \\
& =5115
\end{aligned}
$$

$$
\therefore \text { they would earn } 5115 \text { point }
$$

2. Expand and simplify each binomial power.

15101051
a) $(3 y+5)^{5}=1(3 y)^{5}+5(3 y)^{4}(5)+10(3 y)^{3}(5)^{2}+10(3 y)^{2}(5)^{3}+5(3 y)(5)^{4}+1(5)^{5}$

$$
=243 y^{5}+2025 y^{4}+6750 y^{3}+11250 y^{2}+9375 y+3125
$$

b) $\left(2 x-x^{2}\right)^{4}=1(2 x)^{4}+4(2 x)^{3}\left(-x^{2}\right)+6(2 x)^{2}\left(-x^{2}\right)^{2}+4(2 x)\left(-x^{2}\right)^{3}+1\left(-x^{2}\right)^{4}$

$$
=16 x^{4}-32 x^{5}+24 x^{6}-8 x^{7}+x^{8}
$$

3. Adam borrows $\$ 18,000.00$ to pay for a new car. He must repay the loan in monthly payments of $\$ 380.00$ (at the end of each month), and interest is charged at $9 \% /$ annum, compounded monthly. Complete the amortization table.

	A	B	C	D	E
1	Payment Number	Payment	Interest Paid	Principal Paid	Outstanding Balance
2	0	--	\cdots	\cdots	$\$ 18,000.00$
3	1	380.00			
4	2				
5	3				

What would his monthly payment be if he wanted to pay off the loan in 5 years?

$$
\begin{aligned}
P V & =18000 \\
R & =? \\
i & =\frac{0.09}{12} \\
& =0.0075 \\
n & =12(5) \\
& =60
\end{aligned}
$$

$$
\begin{aligned}
& 18000=\frac{R\left[1-(1.0075)^{-60}\right]}{0.0075} \\
& 135=R\left[1-1.0075^{-60}\right] \\
& 373.65=R
\end{aligned}
$$

\therefore his put would be ${ }^{\$} 373.65$
\qquad

1. Determine an equation for the graph below.

$$
\begin{aligned}
& a=0.75 \\
& k=\frac{360}{6}=60 \\
& D=0.75 \cos 60 t+1.25
\end{aligned}
$$

2. Point $P(-15,-8)$ lies on the terminal arm of angle θ.
a) Sketch angle θ.
b) Determine:
-the primary trig ratios for angle θ

$$
\begin{aligned}
& \sin \theta= \\
& \cos \theta= \\
& \tan \theta=
\end{aligned}
$$

-the related acute angle for angle θ -angle θ in degrees

$$
\begin{aligned}
\tan \beta & =8 / 15 \\
\beta & =28.07
\end{aligned}
$$

3. A triangle has side lengths of $10 \mathrm{~cm}, 16 \mathrm{~cm}$, and 21 cm . Find its area.

Hint:

$$
A=\frac{b \times h}{2}
$$

(1)

$$
\begin{aligned}
\cos \theta & =\frac{16^{2}+21^{2}-10^{2}}{2(16)(21)} \\
\cos \theta & =0.8883928571 \\
\theta & =27.33^{\circ}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \sin \theta=\frac{h}{16} \\
& 16 \sin 27.33=h \\
& 7.345=h
\end{aligned}
$$

$$
\text { (3) } A=\frac{21(7.345)}{2}
$$

$$
A=77.13
$$

4. Prove the following identities.
a) $(\sin x-\cos x)^{2}=1-2 \sin x \cos x$

$$
\begin{array}{l|l}
\text { LS: }(\sin x-\cos x)^{2} & R S: 1-2 \sin x \cos x \\
=(\sin x-\cos x)(\sin x-\cos x) \\
=\sin ^{2} x-2 \sin x \cos x+\cos ^{2} x \\
=\left(\sin ^{2} x+\cos ^{2} x\right)-2 \sin x \\
\cos x \mid & \\
=1-2 \sin x \cos x & \because L S=R S \\
& \therefore(\sin x-\cos x)^{2}=1-2 \sin x \cos x
\end{array}
$$

b) $\cos ^{2} x+\frac{\sin x \cos x}{\tan x}=2 \cos ^{2} x$

$$
\begin{array}{l|l}
\text { LS: } \cos ^{2} x+\frac{\sin x \cos x}{\tan x} & \text { RS: } 2 \cos ^{2} x \\
\hline=\cos ^{2} x+\sin x \cos x\left(\frac{\cos x}{\sin x}\right) & \\
=\cos ^{2} x+\cos ^{2} x & \\
=2 \cos ^{2} x & \\
& \therefore \cos ^{2} x+\frac{\sin x \cos x}{\tan x}=2 \cos ^{2} x \\
& x \neq 0 ; 180^{\circ} 30^{\circ}
\end{array}
$$

5. For $y=-3 \sin \left(2 \theta-60^{\circ}\right)$, determine the mapping formula and graph one cycle of the function.

$$
y=-3 \sin 2\left(\theta-30^{\circ}\right)
$$

$a_{\text {af. }}=3$
start: 30°
period $=180^{\circ}$
end: 210°
lea: $y=0$

