## Units 1 & 2 Review Quiz

Name Solutions

1. Simplify the following.

a) 
$$\sqrt{8} + \sqrt{12} - \sqrt{20}$$
  
=  $2\sqrt{2} + 2\sqrt{3} - 2\sqrt{5}$ 

b) 
$$\frac{16-\sqrt{20}}{6\sqrt{5}}$$
  $\Rightarrow \frac{2(8-\sqrt{5})}{6\sqrt{5}}$   $= \frac{16-2\sqrt{5}}{6\sqrt{5}}$   $= \frac{8-\sqrt{5}}{3\sqrt{5}}$ 

2. Determine the equation that correctly identifies each graph.



3. For the equation  $f(x) = -3x^2 - x + 2$ :





b) Determine the value of x when f(x) = -8.  $-8 = -3x^{2} - x + 2$  0 = -(3x - 5)(x + 2)4. State the Domain and Pange for each of the fell

4. State the Domain and Range for each of the following functions.

a) 
$$y = -2\sqrt{3x+3} - .5$$
  
 $y = -2\sqrt{3(x+1)} - \frac{1}{2}$   
 $D = \{x \in \mathbb{R} \mid x \ge -1\}$   
 $R = \{y \in \mathbb{R} \mid y \le -\frac{1}{2}\}$ 

b) 
$$y = -\frac{1}{2}(x+3)^2 + 2$$

$$D = \{x \in \mathbb{R}\}$$

$$R = \{y \in \mathbb{R} | y \leq 2\}$$

- 5. For the function  $f(x) = \sqrt{(x-3)} + 1$ , determine:
- a) the Domain

b) the Range

c) the equation of its inverse

$$(x-1)^2 = y-3$$

 $x = \sqrt{y-3} + 1$   $(x-1)^2 + 3 = y , x \ge 1$  Only went 1 arm  $(x-1)^2 = y-3$   $\vdots$   $f^{-1}(x) = (x-1)^2 + 3$  obthe parabole!

- d) If its inverse is also a function, write the function using proper form. If not, explain why not.
- 6. For the graph below:
- a) Describe all transformations to the graph of  $y = \frac{1}{2}$ ht. right 2

VE down 3

b) Determine the equation(s) of any asymptote(s).





ベニレ



1. a) Determine the equation that correctly identifies each graph.





4=-2(x+4) +3

Y== (x-4)-+12

b) The discriminant of both of the above must be  $\frac{1}{6}$ -4ac > 0

Two numbers have a sum of 16. Determine the numbers if their product is a maximum.

Let x and y be the numbers

product = x(16-x)

max is 64

which occurs

=- (x2-16x+64)+64 : #s are

= - (x-8)2-1-4

8 and 8

3. The perimeter of a rectangular yard is 480m. Determine the dimensions if the area is  $14,000 \text{ m}^2$ .





480=21+2w 480-2W=21

.. Dimensions are 100m x 140m 4. A species of bacteria has a population of 3200 at 11:00 A.M. It triples every 8 hours. The function that models the growth of the population P at any time t, in hours,

 $P(t) = 3200(3)^{8}$ is given by:

a) Why is the exponent  $\frac{1}{8}$ ? Want to know how many tripling periods there are.

b) Why is the base 3?

• Because the population is tripled

d) Determine the y-intercept of the function. 3200

e) Determine the population at 11:00 P.M. on the following day.

P(36) = 3200 (3) t = 36 .. there are 448947 bacteria =448947.56 at Ilpm.

f) At what time will the population reach 28800?

28800 = 3200 (3) : at 3pm the next dan 3=3" / t=16

Le population is 28800

5. The half-life of Tylenol is 6 hours. If I take 500 mg at 9:00 A.M., how much will be left in my system after 24 hours?

$$P(t) = 500 {1 \choose 2}^{t/L}$$
  
 $P(24) = 500 {1 \choose 2}^{24/L}$   
 $= 31.25$ 

: 24 hrs later the is 31.25 mg in your system.

1. The 'Knock-Em-Over' carnival game requires participants to throw a ball at a pile of cans and attempt to knock over each can. At the 'Beginner Level', the cans are stacked 3 rows high, as shown:

At the 'Super-Advanced Level', the cans are piled 15 rows high!

a) Express the total number of cans required for 15 rows as a series, and evaluate.

$$n=15$$

$$a=1$$

$$d=1$$

$$S_{15} = \frac{15}{2} [2(1) + (15 - 1)(1)]$$

$$= \frac{15}{2} (2 + 14)$$

$$= \frac{15}{2} (16)$$

$$= 120$$



As the level of difficulty increases, so does the number of points that a player can win. At the beginner level (Level 1) a player who wins gets 5 points. Level 2 is worth 10 points, Level 3 is worth 20 points, Level 4 is worth 40 points, etc.

b) Determine the number of points a player would win if successful at Level 10.

$$a=5$$
 $r=2$ 
 $n=10$ 
 $= 5(z)^{9}$ 
 $= 2560$ 

.. they would earn 2560 points

c) A player starts at Level 1 and completes all the way to Level 10. Express the total number of points earned as a series, and evaluate.

$$a=5$$
 $r=2$ 
 $n=10$ 
 $S_{10} = \frac{5(2^{10}-1)}{2-1}$ 
 $S_{10} = \frac{5(2^{10}-1)}{2-1}$ 

2. Expand and simplify each binomial power.

a) 
$$(3y + 5)^5 = 1(3y)^5 + 5(3y)^7(5) + 10(3y)^3(5)^2 + 10(3y)^2(5)^3 + 5(3y)(5)^4 + 1(5)^5$$
  
=  $243y^5 + 2025y^4 + 6750y^3 + 11250y^2 + 9375y + 3125$ 

b) 
$$(2x-x^2)^4 = 1(2x)^4 + 4(2x)^3(x^2) + 6(2x)^2(-x^2)^2 + 4(2x)(-x^2)^3 + 1(-x^2)^4$$
  
=  $16x^4 - 32x^5 + 24x^6 + 8x^7 + x^8$ 

3. Adam borrows \$18,000.00 to pay for a new car. He must repay the loan in monthly payments of \$380.00 (at the end of each month), and interest is charged at 9%/annum, compounded monthly. Complete the amortization table.

|   | Α                 | В       | С             | D                 | E                      |
|---|-------------------|---------|---------------|-------------------|------------------------|
| 1 | Payment<br>Number | Payment | Interest Paid | Principal<br>Paid | Outstanding<br>Balance |
| 2 | 0                 |         |               | ***               | \$18,000.00            |
| 3 | 1                 | 3€0.60  |               | -                 |                        |
| 4 | 2                 |         | 4             | ·                 |                        |
| 5 | 3                 |         |               |                   |                        |

What would his monthly payment be if he wanted to pay off the loan in 5 years?

$$i = \frac{0.09}{12}$$

$$N = 12(5)$$

## Units 7, 8 & 9 Review Quiz

Name \_\_\_\_\_

1. Determine an equation for the graph below.



Distance (m)



Time (s)

- 2. Point P (-15,-8) lies on the terminal arm of angle  $\theta$ .
- a) Sketch angle  $\theta$ .
- b) Determine:
- -the primary trig ratios for angle  $\boldsymbol{\theta}$

$$\sin \theta =$$

$$\cos \theta =$$

$$\tan \theta =$$

- -the related acute angle for angle  $\boldsymbol{\theta}$
- -angle  $\theta$  in degrees





tan B = 8/15 b = 28.07°

3. A triangle has side lengths of 10 cm, 16 cm, and 21 cm. Find its area.



Hint: 
$$A = \frac{b \times h}{2}$$

$$A = \frac{21(7.345)}{2}$$

- 4. Prove the following identities.
- a)  $(\sin x \cos x)^2 = 1 2\sin x \cos x$

LS: 
$$(\sin x - \cos x)^2$$
 RS:  $1 - 2\sin x \cos x$ 

=  $(\sin x - \cos x)(\sin x - \cos x)$ 

=  $\sin^2 x - 2\sin x \cos x + \cos^2 x$ 

=  $(\sin^2 x + \cos^2 x) - 2\sin x \cos x$ 

=  $1 - 2\sin x \cos x$ 

: LS=RS

b) 
$$\cos^2 x + \frac{\sin x \cos x}{\tan x} = 2 \cos^2 x$$

LS: 
$$\cos^2 x + \frac{\sin x \cos x}{\tan x}$$

$$= \cos^2 x + \frac{\cos^2 x}{\sin x}$$

$$= \cos^2 x + \cos^2 x$$

$$= 2\cos^2 x$$

$$: LS = RS$$

: (sinx-cosx) = 1-2sinx cosx

5. For  $y = -3 \sin (2\theta - 60^{\circ})$ , determine the mapping formula and graph one cycle of the function.

Y=-3sinz(0-30)

