## Today's Learning Goal(s):

By the end of the class, I will be able to:

a) use the formulas for lengths, midpoints, and slopes to verify properties of quadrilaterals.

MPM 2DI

3.4 Verify Properties of Quadrilaterals

From last class on *The Geometer's Sketchpad*, you learned:

- 1. Joining the midpoints of adjacent sides of ANY quadrilateral forms a parallelogram.
- 2. In ANY parallelogram, the diagonals bisect each other.

To verify means to confirm, or demonstrate that something is true, accurate, or justified.

Ex.1 Given: A(-5, -2), B(-1, 4), C(13, 0) and D(5, -8). Using analytic geometry, verify that the quadrilateral formed by joining the midpoints of adjacent sides of quadrilateral ABCD, is a parallelogram.

Solution: Discuss labelling in order: EFGH.

- If the slopes of the opposite sides are equal, then EFGH is a parallelogram.
- First, calculate the midpoint of each side of ABCD.



\*Use the coordinates of the midpoints to calculate the slope of each side of EFGH.



∴ *EFGH* is a parallelogram.

Ex.2 Given: T(1, -2), U(3, 4), V(9, 6) and W(7, 0). Using analytic geometry:

- a) Verify that the quadrilateral is a rhombus. Sketch the rhombus.
- b) Verify that the diagonals of TUVW bisect each other.
- c) Verify that the diagonals of TUVW bisect each other at right angles.

## Solution:

a) If all four sides are equal in length, then TUVW is a rhombus.



b) If the diagonals have the same midpoint, they bisect each other.

\*We could measure the length of each part of the diagonal, to see if they are equal. (but that would be more work).

Midpoint of TV.

$$\left(\frac{1+9}{3}, \frac{-3+6}{3}\right) \qquad \left(\frac{3+7}{3}, \frac{4+0}{3}\right) \\
= \left(\frac{10}{3}, \frac{4}{3}\right) \\
= \left(5, 2\right) \qquad -\left(5, 2\right)$$
Midpoint of UW.

$$\left(\frac{3+7}{3}, \frac{4+0}{3}\right) \\
-\left(\frac{10}{3}, \frac{4}{3}\right) \\
-\left(5, 2\right)$$

•• the midpoints of the diagonals have the same coordinates,

: the diagonals bisect each other.

c) If the slopes of the diagonals are negative reciprocals, then the diagonals bisect each other at right angles.

$$M_{TV} = \frac{6 - (-2)}{9 - 1}$$

$$= \frac{8}{8}$$

$$= 1$$

$$m_{uw} = \frac{0-4}{7-3}$$
=  $\frac{-4}{4}$  (heak = -1)
=  $-\frac{1}{1-1}$ 

- : the slopes are negative reciprocals
- ∴TV\_UW
- : the diagonals bisect each other at right angles

Today's entertainment: pp. 142-143 #2, 4, 5, 10, 12, 14

**Enrichment:** p. 144 #17

Remember to begin working ahead on the Review: pp.152-155