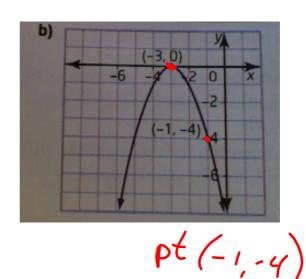
4.4 3 G	raph y=a	(x-h)^2 +	k (Day3	(Spring	2016)-s1	6.notebook
---------	----------	-----------	---------	---------	----------	------------

Before we begin, are there any questions from last day's work?

Today's Learning Goal(s):

By the end of the class, I will be able to:


a) consolidate understanding of **graphing** and **determining an equation** of a quadratic relation in vertex form: $y = a(x-h)^2 + k$

Today's plan:

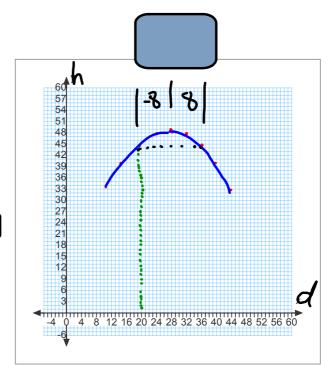
Show What You Know 4.1: Graphing Quadratic Relations

p. 185 #6b

$$y = a(x-h)^{2}+k$$

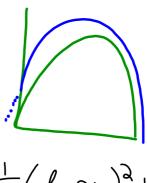
$$y = a(x+3)^{2} + 0$$

 $(-4) = a(-1+3)^{2}$
 $-4 = a(2)^{2}$
 $-4 = 4a$


$$\int_{-\infty}^{\infty} (x+3)^{3}$$

= $-(x+3)^{3}$

p. 187 #12


$$h = -\frac{1}{16} (A - 28)^{2} + 49$$

$$U(28, 49)$$

He ball is 49m c) when does max occur? When d= 28 m

d) if d=20 $h = -\frac{1}{16}(20-28)^{3} + 49$ $= -\frac{1}{16}(-8)^{3} + 49$ $= -\frac{1}{16}(-8)^{3} + 49$ $= -\frac{1}{16}(-8)^{3} + 49$ $= -\frac{1}{16}(-8)^{3} + 49$

$$h = \frac{1}{16}(d-28)^{2} + 49$$

$$= \frac{1}{16}(0-38)^{2} + 49$$

$$= \frac{1}{16}(784) + 49$$

$$= -49 + 49$$

$$= -0$$

$$h = -5(t-5)^{2} + 127$$
 $v(5,127)$

a) max. height =
$$\frac{1}{2}$$
 m

$$h = -5(t-5)^{2} + 127$$

$$let t = 0$$

$$h = -5(0-5)^{2} + 127$$

$$= -192 + 193$$

$$= -2(92) + 193$$

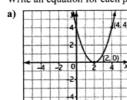
$$= -2(-2)_3 + 193$$

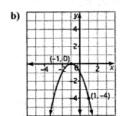
4.4 Graph $y = a(x - h)^2 + k$ Principles of Mathematics 10, pages 180–188

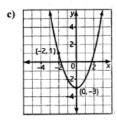
A

 Copy and complete the table for each parabola. Replace the heading for the second column with the equation for the parabola.

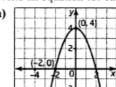
Property	$y = a(x - h)^2 + k$	
Vertex		
Axis of symmetry		
Stretch or compression factor relative to $y = x^2$		
Direction of opening	ing beredikt.	
Values x may take	learn british (C.C.	
Values y may take		

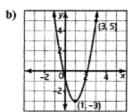

- a) $y = (x+3)^2$
- **b)** $y = (x-4)^2$
- **c)** $y = (x+2)^2 + 5$
- **d)** $y = (x+5)^2 3$
- e) $y = (x-6)^2 + 7$
- **f)** $y = (x-1)^2 8$
- g) $y = -(x+8)^2 4$
- **h)** $y = 3(x+7)^2 2$
- i) $y = -2(x+3)^2 6$

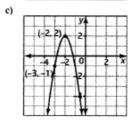

j)
$$y = -\frac{1}{2}(x+5)^2 - 3$$


Use Technology Graph each parabola in question 1 using a graphing calculator. В

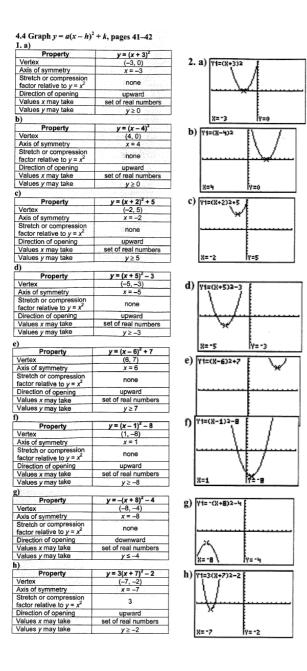
- 3. Write an equation for the parabola with vertex (3, 5), opening upward, and with no vertical stretch or compression.
- Write an equation for the parabola with vertex (6, -2), opening downward, and with no vertical stretch or compression.
- Write an equation for the parabola with vertex (-4, 5), opening downward, and with a vertical stretch of factor 3.
- Write an equation for the parabola with vertex (-1, -7), opening upward, and with a vertical compression of factor 0.4.


7. Write an equation for each parabola.



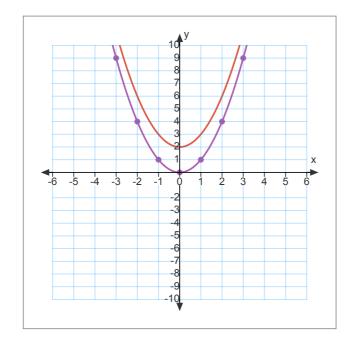


8. Write an equation for each parabola.

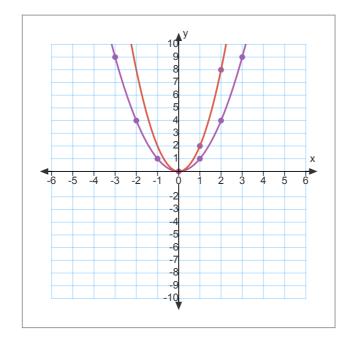


- 9. a) Find an equation for the parabola with vertex (2, 6) that passes through the point (5, 3).
 - b) Find an equation for the parabola with vertex (-3, -4) that passes through the point (2, 6).
 - c) Find an equation for the parabola with vertex (-1, 3) and x-intercept 1.
 - d) Find an equation for the parabola with vertex (2, 5) and y-intercept -3.
 - e) Find an equation for the parabola with vertex (-6, -2) that passes through the point (-3, -11).
 - f) Find an equation for the parabola with vertex (6, 4) that passes through the point (8, 2).
 - 11. A parabola has equation $y = 3(x + 2)^2 + 4$. Write an equation for the parabola after each set of transformations.
 - a) a reflection in the x-axis
 - b) a translation 6 units to the right
 - c) a reflection in the x-axis, followed by a translation of 3 units downward
 - d) a reflection in the y-axis

C


- 10. The path of a football is modelled by the relation $h = -\frac{1}{4}(d-12)^2 + 36$, where d is the horizontal distance, in metres, after it was kicked, and h is the height, in metres, above the ground.
 - a) Sketch the path of the football.
 - b) What is the maximum height of the football?
 - c) What is the horizontal distance when this occurs?
 - d) What is the height of the football at a horizontal distance of 10 m?
 - e) Find another horizontal distance where the height is the same as in part d).
 - 12. Find the equation for each of the following circles. Write your answer in the form $(x h)^2 + (y k)^2 = r^2$.
 - a) radius 4, centred at (6, 0)
 - b) radius 5, centred at (0, -2)
 - c) radius 3, centred at (-7, 3)
 - d) radius 6, centred at (-5, -4)

)		
Property	$y = -2(x + 3)^2 - 6$	
Vertex	(-3, -6)	i) Y1=-2(X+3)2-6
Axis of symmetry	x = -3	7 [
Stretch or compression factor relative to $y = x^2$	2	
Direction of opening	downward	7 1
Values x may take	set of real numbers	ا د ا
Values y may take	y ≤ -6	
		1)
Property	$y = -\frac{1}{2}(x+5)^2 - 3$	j) Y1=-(1/2)(X+5)2-3
Vertex	(-5, -3)	1
Axis of Symmetry	x = -5	
Stretch or compression factor relative to $v = x^2$	1/2	11/1
Direction of opening	downward	
Values x may take	set of real numbers	
Values v may take	v ≤ -3	7


3.
$$y = (x - 3)^2 + 5$$

4. $y = -(x - 6)^2 - 2$
5. $y = -3(x + 4)^2 + 5$
6. $y = 0.4(x + 1)^2 - 7$
7. a) $y = (x - 2)^2$
b) $y = -(x + 1)^2$
c) $y = x^2 - 3$
8. a) $y = -x^2 + 4$
b) $y = 2(x - 1)^2 - 3$
c) $y = -3(x + 2)^2 + 2$
b) 36 m
c) 12 m
d) 35 m
e) 14 m
11. a) $y = -3(x + 2)^2 - 4$
b) $y = 3(x - 4)^2 + 4$
c) $y = -3(x + 2)^2 - 7$
d) $y = 3(x - 2)^2 + 4$
12. a) $(x - 6)^2 + y^2 = 16$
b) $x^2 + (y + 2)^2 = 25$
c) $(x + 7)^2 + (y - 3)^2 = 9$
d) $y = -2(x - 2)^2 + 5$
e) $y = -(x + 6)^2 - 2$
f) $y = -\frac{1}{2}(x - 6)^2 + 4$

4.4_3 Graph y=a(x-h)^2 + k (Day3) (Spring 2016)-s16.notebook	
Some of simple notebook equations/graphs on next 2 pages	

$$y = x^2 + 2$$

$$y = x^2$$

$$y = 2x^2$$

$$y = x^2$$