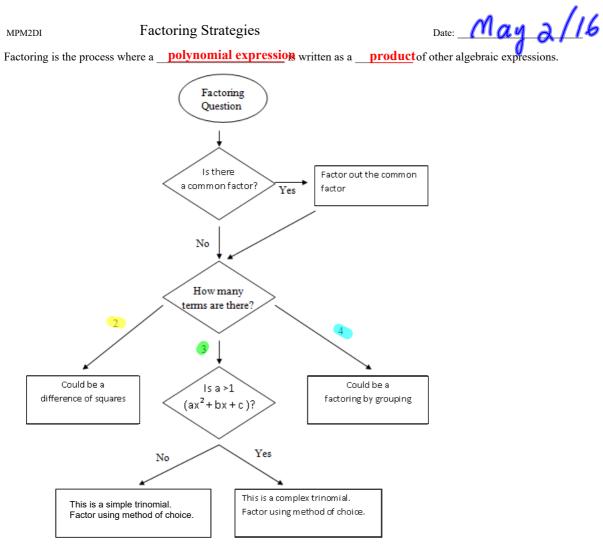
Worksheet Factoring Practice ID: 1 #1-18 (All worksheet Answers are posted on the Website)

Today's Learning Goal(s):


By the end of the class, I will be able to:

a) recognize and factor: common factors (including grouping) trinomials (with a=1 and $a \ne 1$) special cases (including a difference of squares & a perfect square trinomial) combinations of the above

Old Optional Homework

Any questions from last day's homework? pp. 253-255 # 1aceg, 2aceg, 6aceghi, 7, 9, 10bd, 15, 16, 17a, 20a

Enrichment: pp. 254-255 #13, 20, 23

Today's entertainment:

Worksheet Factoring Practice **ID: 2** #1-18 (All worksheet Answers are posted on the Website)

Worksheet Factoring Practice ID: 1 #1-18 is below

ID: MPM2D MSIP Factoring Practice "Day!"...Do your best. Then, check answers from the Key that is on the back!

REMEMBER - if the leading term is negative, factor out the negative first! © 2012 Kuta Software LLC. All rights reserved.

Factor each completely.

1) $3k^2 - 8k$ 2) $6x^2 + 32x - 24$ 3) $7m^2 + 2m - 10$ 2) $6x^2 + 32x - 24$ 3) $7m^2 + 2m - 10$ 4) $-9a^2 - 75a + 150$ 3) $7p^2 - 58p - 45$ 6) $50k^2 + 40k + 8$ 7) $m^2 - 4$ 8) $64r^2 - 36$ 9) $75x^2 - 48$ Factor the common factor out of each expression. 3Factor the common factor out of each expression. 311) $20y^4 + 8y^2y^2 + 5y$ (4) (4) (4) (4) (7) (7)

12)
$$24uv^2 + 24u^3 + 30u^3v$$

Factor each completely.

13)
$$9x^2 + 30xy + 25y^2$$

15)
$$9y^2 - 16x^2$$

17)
$$20r^3 - 16r^2 + 25r - 20$$

14)
$$4a^2 - 9b^2$$

$$\frac{16)}{3x^3 - 4x^2 + 6x - 8} = \frac{3x - 4}{x^2 + 2}$$

18)
$$3n^3 + 3n^2 + 5n + 5$$

=
$$3n^{2}(n+1)+5(n+1)$$

= $(n+1)(3n^{2}+5)$

© 2012 Kula Software ELC. All rights reserved. Made with Infinite Algebra 1

8ab, 9ab, 11ab

Enrichment: p. 241 #15b, 17b

6a)
$$W = x^2 + (8x + 80)$$

Sa)
$$x^{2}+bx+12$$

 $\therefore M = 12$
 $\begin{vmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{vmatrix}$
 $\therefore b = 13$ $\Rightarrow 2$

$$\int_{1}^{1} f = \int_{1}^{1} f =$$

$$75$$
) $2d^{2}-22d+56$
= $2(d^{2}-11d+28)$
= $2(d-4)(d-7)$

b)
$$x^{2}-bx+4$$

 $\therefore M=4$
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 1.4
 $1.$

115)
$$k^2$$
 11Km+(8m² -(x+3)(k+8)
-(k-2m)(k-9m)

$$47$$
) $9-24k+16k^2$
= $16k^2-24k+9$
= $(4k-3)^2$