Before we begin, are there any questions from last day's work? See next screen

Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) find the *x*-intercepts of a quadratic relation, *if they exist*.
- b) graph a quadratic relation using factored form.

6.2 Homework (2 days ago)

Enrichment: p. 281 #19, 20

pp. 279-280 #1adg, 2aef
(do not produce a formal "check"),
3adef, 4ab, 5bcd, 6 (HINT: goramon factor first),
7, 8, 14
p. 241 #14
p. 247 #13

4.5 Homework (yesterday)

Read "Key Concepts" on p.191 pp. 192-193 #3, 4abc, 5, 6, 8, 10, 11 *Enrichment*: p. 193 #12, 13, 15

Ex. 1 Find the *x*-intercepts.

a)
$$y = 6x^{2} + 5x - 14$$
 b) $y = x^{2} + 9x + 0$ c) $y = 2(x - 3)(-4 - x)$ $0 = (6x - 7)(x + 2) = (x + 0)(x + 9)$ $0 = 2(x - 3)(-4 - x)$ $0 = 2(x - 3)(-4 - x)$

a)
$$y = -x^2 - 4x + 5$$

 $= -(x^2 + 4x - 5)$
 $0 = -1(x - 1)(x + 5)$
 $x = -5$

b)
$$y = x^2 - 6x + 10$$

= $(x -)(x -)$

$$y = (x-3)^{2} + 1$$

$$= x^{2} - 6x + 9 + 1$$

$$= x^{2} - 6x + 10$$

$$0 = (3, 1)$$

$$AGS: X = \frac{1+(-5)}{2}$$

$$A = -(3)(-3)$$

$$= -(3)(-3)$$

$$= -(-3 + 1)(-3 - 1)$$

$$= -(-3 + 1)(-3 - 1)$$

Today's entertainment: Read "Key Concepts" on p.288

pp. 289-290 #3bd (GRAPH both instead of sketching), 5ac (SKETCH both – don't graph. Also, look in the answers section instead of using a graphing calculator), 6ab,10, 12, 14 p. 241 #13

Enrichment: p. 291 #17 to 20

GRAPH vs. SKETCH

Video example link on next slide.