Compound Interest Warm-Up (Not included on the handout)

- 1a) If you received something semi-annually, how often would you receive it?
- 2 times per year
- 1b) If you received something quarterly, how often would you receive it?
- 4 times per year

- 2. Calculate:
 - a) one half of \$200
- b) one quarter of \$100

3. Use your calculator to evaluate: $A = 575 \left(1 + \frac{0.03}{4}\right)^8$

You may need to input your calculator as follows:

$$575 \times (1 + 0.03 \div 4) \times 8 =$$

\$610.42

Before we begin, are there any questions from last day's work?

Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) Understand the compound interest formula.
- b) Calculate the final amount of money for different compounding period
- c) Determine the total interest earned.

MBF3CI Compound Interest

Date: May 21/15

Suppose you deposit \$1000 into an investment at a bank that pays you 7%compound interest per year. The original investment of \$1000 is known as the original principal.

Compound interest is calculated on the original principal **PLUS** any interest that has already been earned! This is a chart that shows how the money grows over the first few years:

Examp	le:		
X	У		<u> </u>
Years	Principal @ start of year (\$)	Compound Interest (\$)	Balance @ end of year (\$)
0	\$ 1000	1000(0.07) = \$ 70	\$ 1070.00
1	\$ 1070	1070 (0.07) = \$74.90	\$ 1144.90
2	\$1144.90	1144.90(0.07) = \$80.14	\$ 1225.04

Does the money grow linearly, exponentially, or as a quadratic relation? Explain!

& Compound interest grows exponentially.

The chart above shows how \$1000 grows when the interest is 7% per year, **compounded annually**, for several years.

"Compounded annually" means the interest is calculated on the outstanding principal.

What $\it formula$ can be made to find the final balance at the end of 2 years? 1^{st} year 2^{nd} year

$$A=1000(1.07)(1.07)$$

 $A=1000(1.07)^2$

Compound interest can be calculated more than just once per year! How many mes <u>per year</u> is interest calculated, if money is compounded...?

	annually	semi- annually	quarterly	monthly	daily
Number of interest periods	4	2	4	12	365
per year					

FY 1.

If a bank states that an investment earns 7% per year, calculate the interest rate per compounding period:

annually	semi- annually	quarterly	monthly	daily
7% = 0.07	$\frac{\bullet}{2} \frac{0.07}{2}$	$\frac{0.07}{4}$	$\frac{0.07}{12}$	$\frac{0.07}{365}$

Rather than using a table or a graph to see how the value of an investment/loan grows, you can use a formula:

$$A = P(1+i)^n$$
 (COMPOUND INTEREST FORMULA)

 ${\cal A} \quad {\rm is \ the \ final \ amount}$

P is the principal (original amount)

n is the number compounding period:

i is the interest rate per compounding period

EX. 2: State the values that would be substuted into the above formula. **Do not evaluate.**

a) A loan of \$750 is taken out for 3 years at a rate of 7%/a, compounded quarterly

A =
$$\frac{9}{4}$$

P = $\frac{750}{4}$
i = $\frac{0.07}{4}$
= $\frac{12}{4}$

b) \$600 is invested for 5 years at $3\frac{3}{4}\%$ per year, compounded semi-annually

EX. 3: USING THE NEW FORMULA, now evaluate.

(last) #Note: These values are NOT the interest earned!!!

(How would you calculate the interest earned?)

⊕ Don't forget that A = P + I, and I = A - P

EX. 4: Determine the amount of, and total interest earned on a \$1400 investment at 5% per year, compounded monthly for 4 years.

A = ?
$$A = P(1+i)^n$$
 $A = P(1+i)^n$
 $A = 1400$
 $A = 1400 \left(1 + \frac{0.05}{12}\right)^{48}$
 $A = 1400 \left(1 + \frac{0.05}{12}\right)^{48}$

the amount of the investment is $\boxed{\$1709.25}$, and total interest earned is $\boxed{\$309.25}$.

Entertainment: pp. 432-434 #2, 3, 6, 8, 12, 15

=48

Quiz 8.1 on **Monday** on Simple and Compound Interest

