
Today's Learning Goal(s):

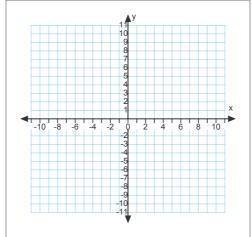
By the end of the class, I will be able to:

a) Create a practice test to prepare for the unit summative. (This means you must understand all the topics from this unit, and be able to provide a mathematical example for each. You may use the assigned homework as a guide.)

MPM 2DI

1.R Linear Systems Unit Review

Date: _


A linear system is a set of 2 (or more) lines.

The solution to the system is the Point Of Intersection (P.O.I.) of those lines.

Ex. 1 a) Solve the system by graphing.

$$3x + 2y + 18 = 0$$
 ①

$$3x + 2y + 18 = 0$$
 ① $y = \frac{1}{4}x - 2$ ②

b) Did you remember to state your solution?

(i.e. Identify the coordinates of the point of intersection.)

Ex. 2 Solve the system by substitution, and include a proper check.

$$3x-4y = -13 ①$$

$$2x - y = -13 \odot 2x - y = -12 \odot 2$$

Ex. 3 Solve the system by elimination, and include a proper check.

$$2x - 8y = 7$$

$$5x + 6y = -2$$

Also:

Translating *phrases* into a algebraic *expressions*, and translating <u>sentences</u> into algebraic <u>equations</u>.

Equivalent linear relations, and equivalent linear systems (from slide 1)

Solving linear system word problems: money, mixture and motion.

Today's Practice

EXIT CARDS:

p.49 #14, 15, 16: define variables and the system – BUT DON'T SOLVE

In your notebook:

pp. 48-49 #1, 2, 4d (use substitution), 8, 9d (use elimination+show a check), 10b, 12d, 13

Fri. Sept. 16 p. 47 #9, 10, 13, 14 | Man. Sept. 19 p. 47 17. &

P. 47 #10

Let x represent the volume of 30% solution needed, in m!

Let y 60% Solution needed, in m!

Needs 10 L of 42% Solution.

P.46 # Let p represent the speed of the plane in Im Ih Let w represent the wind speed in km/h.

Method	Distance	Speed	Time
tailwhy	3000 =	=ptw >	< 5
headwind	3000 =	- p-W :	× 6
Totals:			
3000 = (ptw) 5 = 5 (ptw) 3000 = 5p + 5w) `¬ոս	0=(p-w)b

Let *b* represent the "best" cruise speed in km/h. Let *e* represent the "economy" cruise speed in km/h.

Let e represent the economy cruise speed in km/n.

$$2b + 3e = 850$$
 $2b + 3(150) = 850$
 $2b + 40 = 850$
 $2b + 40 = 850$
 $2b = 850 - 400$
 $2b = 850 - 400$
 $2b = 850 - 400$
 $2b = 600$

The best cruise speed is 200 kmh ,
 200 kmh
 200 kmh

1=50

P.46 # 7
Let r represent his rowing speed in km/h.

C the speed of the current in km/h.

Method	Distance	Speed	Time
downstream	10		
upstream	8		
Totals:			