MBF 3CI	3.3 Warm-up	Date:

Warm-up: Bias

You have learned about all different types of bias:

- 1. Samplingbias
- 2. Non-response bias
- 3. Response bias
- 4. Measurement bias

Given the following situations,

- a) Classify the bias or biases present
- b) Suggest how it can be avoided
- A. A survey asked students at a HHSS football game whether a fund for extra-curricular activities should be used to buy equipment for the football team and/or instruments for the school band
- B. A poll by an online newspaper includes the question: "Do you plan to support the current government at the next federal election in order to continue to implement their excellent and amazing policies?"
- C. A science class asks every fifth student entering the cafeteria to answer a survey on environmental issues. Less than half agree to complete the questionnaire.

Sampling Bias

Non-response Bias Measurement Bias

Non-response Bias

Before we begin, are there any questions from last day's work?

Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) Understand the difference between discrete data and continuous data
- b) Understand the difference between a bar graph and a histogram.
- c) Understand different ways to express an interval.

MBF3CI

3.3: Display Data

Date: 0 - 12/16

One web site you need to check out \Rightarrow http://www.worldometers.info

Data can be divided into two major categories: discrete and continuous. **Discrete data** can take on only a countable number of values.

Continuous data has an infinite number of values.

students with blue eyes
students wearing black

students wearing black

students wearing black

students wearing black

Discrete data can be either numerical or categorical. **Categorical data** are named types instead of numbers.

Examples of categorical data

types of chocolate bars
types of storesshoes
clothing

Continuous data can never be categorical – it must be numerical.

On your own, do pp.125-126 #1 and 4. (The final answers are in the back of the text on p.555)

The number of observed data in a given interval or a category is known as the **frequency**.

For example: Using height

A **frequency bar graph** is a diagram that represents quantities with horizontal or vertical bars, whose lengths correspond to the frequency of the particular category.

Bar graphs display discrete data only!

So, there is always a gap between each bar.

Created in: Microsoft Office Excel 2007

A **pie (circle) graph** is a diagram where the circle represents the whole and each sector of the circle proportionately (%) represents a part of the whole. Pie (circle) graphs are for discrete data only!

You may use a circle graph or bar graph any time you want to illustrate comparisons, as long as the data is discrete.

Each "slice" is called a sector.

Created in: Microsoft Office Excel 2007

An interval is all of the numbers between two given numbers.

Examples of an interval

0 < x < 10, 10 < x < 20

A **histogram** displays quantities with vertical bars whose lengths correspond to the frequency of a particular interval. It is different from a bar graph in the sense that the intervals contain only continuous data! As a result, there is **never a gap** between the vertical bars.

Since there are no gaps from one interval to the next, it makes sense that a **line graph** can also be displayed for continuous data too! (Let's superimpose this on the graph above) Trap the graph

On your own, do pp.125-126 #2 and 3.

(The final answers are in the back of the text on p.555).

Note: in #2, some of the answers in the back say "circle graph" is the best choice.

Any time the data is discrete and you want to illustrate comparisons,

a bar graph OR circle graph is okay!

Are you done #1 and 4 yet too?