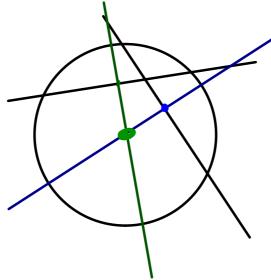
Before we begin, are there any questions from last day's work?

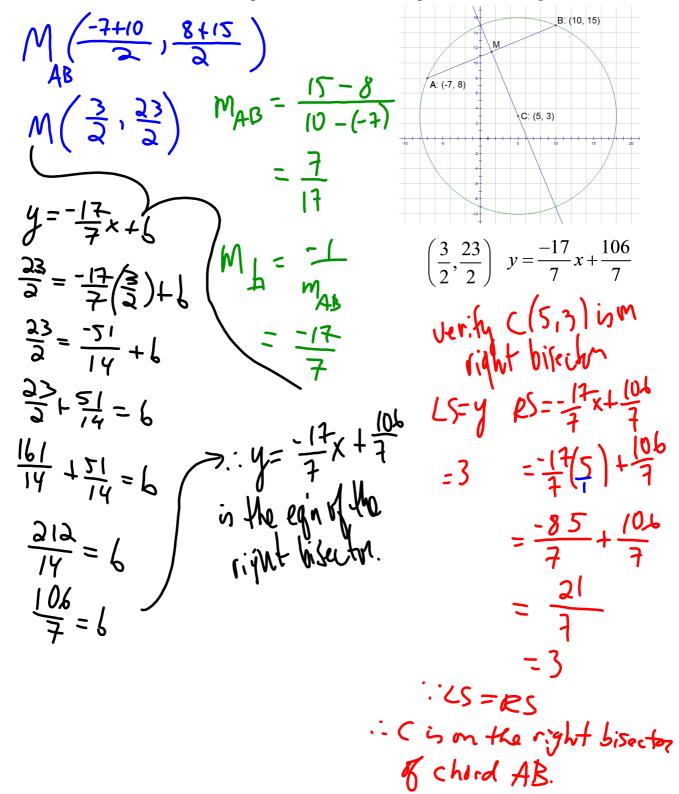

7

Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) verify that the right bisector of a chord goes through the centre of aircle.
- b) verify that points lie on a circle, if the centre is given.

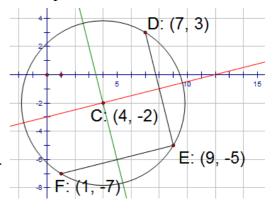
MPM 2DI


3.5 Properties of Circles (Day 2)

Date: 0ct.18/16

Ex.1 Using analytic geometry,

verify that the centre of this circle lies on the right bisector of chord AB.


Note: You MAY NOT use the point C to create the equation for the right bisector.

Ex.2 Points on a Circle

- a) Using analytic geometry, verify that the points D(7, 3), E(9, -5), and F(1, -7) lie on the circumference of the circle with its centre at C(4, -2).
- **Each** point must be the same distance from the centre.
 - : compare the lengths of CD, CE, and CF.

- b) Does any other circle pass through points D, E and F? Explain.
- The right bisector of DE includes all points that are equidistant from D and E.
- Similarly, the right bisector of EF includes all points that are equidistant from E and F.
- These two lines meet only at point C(4,-2). There is no other point equidistant from D, E, and F.

Today's entertainment:

READ p.149 "Key Concepts"

p. 150 #4, 5, 9 (Hint for #9: graph first, then determine **the equations of the right bisector lines** of AB and AC.) (You are NOT allowed to estimate where you believe the centre is).

Optional Extra question on the next slide; solution on website.

MPM:	2DI
------	-----

3.5 Properties of Circles (Extra)

Date:		

Ex. Given the points G (2, 12), H(6, 4) and I(9, 13):

- a) Find C, the centre of the circle through G, H, and I.
- b) Determine the length of the radius of the circle.
- c) <u>IF</u> this circle were centred at the origin, write its equation.

Hint:

Avoid GI.