Before we begin, are there any questions from last day's work Wkst 5.5

p. 275 Challenge: #12, 13

(Reminder: Unit Summative is Friday, Nov. 25th.)

Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) find the zeros of a quadratic (in standard form), by factoring.
- b) find the vertex, by first finding the axis of symmetry. [half way between the zerosx(-intercepts)].
- c) solve problems using the above methods.

MBF 3CI 5.6 Solve Problems Involving Quadratic Relations, 1)

Date:

Ex.1 Given the quadratic relation $y = -2x^2 - 8x + 24$

- a) Does this relation have a maximum or a minimum value?

 How do you know? A is negative to a = 2
- b) Find the zeroes of the relation.
- c) Determine the x-coordinate of the maximum or minimum point.
- d) What is the equation of the axis of symmetry?
- e) Find the maximum or minimum.
- f) Write the relation in vertex form.
- g) Graph the relation.

 $f) y = -3(x+a)^{2} + 3a$ $= -3(x+a)^{2} + 3a$ $= -3(x+a)^{2} + 3a$ $= -3(x+a)^{2} + 3a$

Ex. 2 Find the equation of the axis of symmetry for each quadratic relation.

a)
$$y = (x+3)(x+7)$$

 $O = (x+3)(x+7)$
 $X = -3$ $O(x+7)$
 $X = -3$ $O(x+7)$
 $X = -3$ $O(x+7)$
 $O(x+7$

b)
$$y = -3(x+2)(x-8)$$

$$0 = -3(x+2)(x-8)$$

$$x = -2 + 8$$

$$x = \frac{-2+8}{2}$$

$$= \frac{6}{2}$$

Ex. 3 A water balloon is launched upwards. The balloon follows a path modelled by the relation:

 $h = -2.6t^2 + 7.8t$, where h is the balloon's height above the ground, in metres,

and t is the time, in seconds.

a) When will the balloon hit the ground?

the balloon hits the ground at

b) What is the balloon's maximum height?

Entertainment: pp. 281-284 #1, 2ad, 3abcd, 4, 5abcde, 13, 14ab