Before we begin, are there any questions from last day's work?

(p. 234 #6)
pp. 256-257 #2a, 9d, 10a, 14b, 16a, 19e
(Worksheet: Factoring Practice ID: 3 #1-18)
(All worksheet Answers are posted on the Website)

Today's Learning Goal(s):

By the end of the class, I will be:

a) ready for the unit summative on Wednesday.

Today's practice:

p. 257 #15

pp. 258-259 #2b, 3df, 5, 7cd, 8abc, 10a, 12, 13ab, 15a, 16a (HINT In 16a, the question is expressed as a difference of squares!)

Optional Worksheet: Mixed Factoring #4

- p. 203 #7a (MAKE A GRAPH ON GRID PAPER), 8 (JUST SKETCH IN PART a) NO GRID REQUIRED)
- p. 205 #7 (JUST SKETCH IN PART a) NO GRID)
- p. 316 #4c (NO "CHECK"), 5cd, 7cde (GRAPH ON GRID PAPER)

p.257 19e) 9w2-25x2 = (3W+5X)(3W-5x)

-(11 x W +12 y = 9) (11 x W - 12 y = 9)

ID: 3 MPM2D MSIP Factoring Practice "Day 1"...Do your best. Then, check answers from the Key that is on the back!

REMEMBER - if the leading term is negative, factor out the negative first! © 2012 Kuta Software LLC. All rights reserved.

Factor each completely.

1)
$$-2n^2 - 9n + 56$$

$$2)$$
 $15x^2 - 35x$ $= 5 \times (3 \times -7)$

3)
$$-35n^2 + 50n$$

4)
$$5x^2 - 19x + 12$$

5)
$$7b^2 + 8b$$

6)
$$4a^2 - 25$$

7)
$$8n^2 + 8n + 2$$

8)
$$4n^2 - 12n + 9$$

9)
$$9x^2 - 30x + 25$$

Factor the common factor out of each expression.

10)
$$21y^7 - 28y^{11}x + 35y^8x$$

11)
$$10 - 15mn - 20mn^2$$

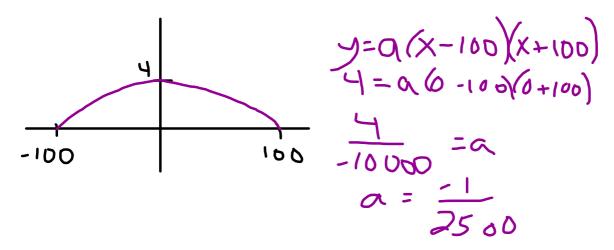
12)
$$5x^4y^{10} - 20x^7y^2 + 20x^3y^3$$

Factor each completely.

13)
$$9m^2 - 24mn + 16n^2$$

14)
$$9x^2 - 16y^2$$

15)
$$16m^2 - 9n^2$$


16)
$$10k^3 + 2k^2 + 25k + 5$$

= $2k^3(5k+1) + 5(5k+1)$
= $(5k+1)(2k^2+5)$
18) $9p^3 - 15p^2 + 15p - 25$

17)
$$8a^3 + 6a^2 + 20a + 15$$

p. 290 #10 (from 2 lessons ago 6.3)

A parabolic arch supports a bridge. The arch is 200 m wide at its base and 4 m tall in the middle.

- a) **Show** this information on a graph by placing the vertex on the y-axis so that the x-axis represents the base of the arch.
- b) How high is a point on the arch that is 20 m horizontally from one end?

Factoring Review MPM2DI

Date:			
Daic.			

1. Factor by common factoring.

a)
$$a^3b^2 + ab^3$$

$$= \alpha h^{2} \left(\alpha^{2} + h \right)$$

b)
$$25x^8 - 30x^5 + 35x$$

$$= ab^{2}(a^{3}+b) = 5\chi(5\chi^{7}-6\chi^{4}+7) = (\chi^{4})(7\chi^{-5})$$

2. Factor as a difference of squares.

a)
$$y^2 - 81$$

$$=(y-9)(y+9)$$

b)
$$9m^2 - 1$$

$$) = (3m + 1)(3m - 1) = (13x+127)(13x-127)$$

3. Factor as a simple trinomial.

a)
$$t^2 + 3t - 10$$

c)
$$x^2 - 8x + 16$$

b)
$$x^2 - 10x - 24$$

d)
$$x^4 + 6x^2 + 8$$

a)
$$(3m^2 - m - 1)$$

$$=(3m-10)(3m+9)$$

$$= (3m - 10)(3m + 9)$$

$$=(3m-10)3(m+3)$$

$$c)_{7x^2+x-8}$$

$$2 (5b) 8m^2 - 5m - 3$$

$$y = (M-1)(8m+3) a_{1}$$

5. Factor by grouping

a)
$$a^2 - 2a + ad - 2d$$

$$= a(a-a) + d(a-a) = x^{3}(x-3) + a(x-3)$$

$$= (a-a)(a+d) = (x-3)(x^{3}+3)$$

c)
$$v^3 + v^2 + 2v + 2$$

$$=(y+1)(y^2+2)$$

= $(y+1)(y^2+2)$

6. Factor fully. It might be necessary to use more than one factoring strategy in order to fully factor these polynomial expressions.

a)
$$x^3 - 3x^2 + 2x$$

$$=K(X-7)(X-1)$$
$$=K(X_{5}-3K+7)$$

c)
$$x^3 - x^2 - 4x + 4$$

$$= (X-1)(X-3)(X+3)$$

$$= (X-1)(X-3)(X+3)$$

b)
$$2x^{4}-18x^{2}$$

= $2x^{2}(x^{2}-9)$
= $2x^{2}(x+3)(x-3)$

 $=(x-3)(x^3+2)$