Before we begin, are there any questions from last day's work?

Worksheet #1 to 6 (#3,4,6 on next slides)

Enrichment: #7 to 10

Today's Learning Goal(s):

By the end of the class, I will be able to:

a) solve a quadratic equation that *cannot* be factored.

**Stress what completing the square does, and when to use it.

6. A field is bounded on one side by a river. The field is to be enclosed on three sides by a fence, to create a rectangular enclosure. The total length of fence to be used is 100 m. Use a quadratic model to determine the dimensions of the enclosure of maximum area. (Answer: 25 m by 50 m)

MPM 2DI

6.4 The Quadratic Formula (Day1)

Warm-up: Solve by factoring.

$$x^{2}+10x+16=0$$

$$(x+2)(x+8)=0$$

$$(x+2)(x+8)=0$$

$$(x+2)(x+8)=0$$

$$(x+3)(x+8)=0$$

$$(x+3)(x+8)=0$$

Note: The related quadratic relation is:

$$y = x^2 + 10x + 16$$

If we complete the square to get vertex form:

$$y = (x+5)^2 - 9$$

The solutions (or roots) for any quadratic equation

$$ax^2 + bx + c = 0$$

can be found using the formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Let's verify the formula using $x^2 + 10x + 16 = 0$

$$x = -b \pm \int b^{2} - 4ac$$

$$= -(10) \pm \int (10)^{2} - 4(1)(16)$$

$$= -10 \pm \int \frac{3}{3}6$$

$$= -10 \pm 6$$

$$= -10 \pm 6$$

$$= -4 = -16$$

$$= -16$$

$$= -18$$

Ex.1 Solve.

$$x^{2} + 10x + 17 = 0 (This clearly does not factor!)$$

$$a = | b = | 0 c = | 7$$

$$X = -(10) \pm \sqrt{(10)^{2} - 4(1)^{1/4}}$$

$$= -10 \pm \sqrt{30}$$

$$= -10 \pm \sqrt{30}$$

$$X = -10 + \sqrt{30}$$

$$\Rightarrow -2.17 | \Rightarrow -7.83$$
Note: The related quadratic relation is:

Note: The related quadratic relation is:

$$y = x^2 + 10x + 17$$

If we complete the square to get vertex form:

$$y = \left(x+5\right)^2 - 8$$

 $y = (x+5)^2 - 8$ (-5, -8)

This means you can now find the x-intercepts of any quadratic relation...if they exist! When would they *not* exist?

Ex. 2 Use the quadratic formula to solve each equation.

Express your answers as exact roots **AND** as approximate roots, rounded to the nearest hundredth.

a)
$$2x^{2}+10x+3=0$$
 $a = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 3$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$
 $A = \lambda b = 10 c = 10$

Today's practice:

YOU **MUST** USE THE QUADRATIC FORMULA LEARNED TODAY.

p. 300~#1*, 2* in the Answers section there are typos: whenever you come across a semi-colon (;) replace it with this symbol \pm

Enrichment: p. 302 #16

Today's practice:

YOU MUST USE THE QUADRATIC FORMULA LEARNED TODAY.

p.~300~#1*,~2** in the Answers section there are typos: whenever you come across a semi-colon (;) replace it with this symbol \pm

Enrichment: p. 302 #16

How to Memorize the Formula?

Quadratic Formula Song (with equation)

http://www.youtube.com/watch?v=O8ezDEk3qCg&feature=related

Another version: start at 20 seconds (After Twinkle, Twinkle)

http://www.youtube.com/watch?v=b1q1pPI79TY&feature=related

Another version: Follow the Weasel (with equation)

http://www.youtube.com/watch?v=2lbABbfU6Zc

Another song: (Done on guitar with equation) 3:45 seconds...complete with intro Song starts at 0:45 seconds

https://www.youtube.com/watch?v=9WbbyAq5BjE

PopGoestheWeasel.mid