MPM 2DI EXAM REVIEW - Chapter 2: Analytic Geometry and Chapter 3: Geometric Properties

Use $\triangle J K L$ for Questions 1 and 2.

1. Using the appropriate formulas learned in class, find the coordinates of the midpoint and the length of each line segment in $\triangle J K L$. Classify $\triangle J K L$ as isosceles, scalene or equilateral. Explain.
2. For $\triangle J K L$, find an equation of the line that contains:
(a) the median from vertex J
(b) the median from vertex K
(c) the right bisector of side JL.
3. On a street map, the coordinates of the two fire stations in a town are $\mathrm{A}(10,63)$ and $\mathrm{B}(87,30)$. A neighbour reports smoke coming from the kitchen of a house at $\mathrm{C}(41,18)$. Which fire station is closer to this house?
4. Use analytic geometry to classify (be very specific!) the quadrilateral with vertices $\mathrm{J}(-2,1), \mathrm{K}(2,3), \mathrm{L}(4,-1)$ and $\mathrm{N}(0,-3)$. Explain your reasoning and show all your work.
5. (a) Draw the triangle with vertices $\mathrm{J}(2,10), \mathrm{K}(6,-6)$, and $\mathrm{L}(14,6)$.
(b) Calculate the coordinates of the midpoint, M , of side JK and the coordinates of the midpoint, N , of side JL.
(c) Verify that MN is half the length of KL.
(d) Verify that MN is parallel to KL.
6. Does the point $\mathrm{P}(-3,-2)$ lie on the right bisector of the line segment with endpoints $\mathrm{Q}(-2,5)$ and $\mathrm{R}(4,1)$? Show your work.
7. Find an equation for each circle centred at the origin and passing through the point:
(a) $\mathrm{J}(0,7)$
(b) $\mathrm{K}(5,6)$
(c) $(8, \sqrt{3})$
8. Find the radius of the circle defined by $x^{2}+y^{2}=16$.
9. What is the centroid of a triangle? Describe how to use analytic geometry to find the coordinates of the centroid of a triangle, if you are given the coordinates of the three vertices.
10. Verify that $\triangle D E F$ is a right triangle, given that $\mathrm{D}(2,14), \mathrm{E}(8,4)$ and $\mathrm{F}(18,10)$.
11. Find the midpoint of $\left(\frac{-1}{2}, 2\right)$ and $\left(3, \frac{2}{3}\right)$. (No decimals)
12. If the midpoints of adjacent sides of any quadrilateral are joined, what type of quadrilateral is formed?
13. Find an equation for each of the right bisectors of the sides of $\Delta J K L$, where $\mathrm{J}(1,2), \mathrm{K}(9,8)$ and $\mathrm{L}(5,0)$.
14. Find the centre of the circle that passes through the three non-collinear points: $P(9,-3), Q(8,6)$ and $R(-1,5)$.
