Recall: \quad Three forms of a quadratic relation:

$$
y=a(x-h)^{2}+k \quad y=a x^{2}+b x+c \quad y=a(x-r)(x-s)
$$

Vertex Form

Factored Form

Find axis of symmetry etc...
Recall: A quadratic equation is of the form $0=a x^{2}+b x+c$, where $a \neq 0$
Recall: \quad The quadratic formula* is used to find the roots/zeroes (if they exist) of quadratic equations.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

* only apply the quadratic formula once factoring has been attempted to find the roots/zeroes

1. Determine the coordinates of the vertex for the relation $y=x^{2}+10 x+13$ by first completing the square and writing the equation in the form $y=a(x-h)^{2}+k$.
2. GRAPH PAPER REQUIRED. Graph $y=2 x^{2}+12 x+10$ by first completing the square and writing the equation in the form $y=a(x-h)^{2}+k$. Be sure to clearly indicate the vertex and label four other points on the parabola.
3. Find the maximum or minimum for the relation $y=-3 x^{2}+24 x-22$ by completing the square, and state the value for which the maximum or minimum occurs. Finally, state the axis of symmetry.
4. Solve by factoring (this means you may not use the Quadratic Formula)
a) $x^{2}+x-6=0$
b) $3 p^{2}+15 p=0$
c) $10 x^{2}+21 x-10=0$
d) $10 x^{2}+11 x-6=0$
5. Solve the following using the quadratic formula. Round to the nearest hundredth for part a) only.
a) $2 x^{2}+9 x+3=0$
b) $4 x^{2}-12 x+9=0$
6. Solve $(3 x-4)^{2}=(x+5)(x-3)$
7. The height (h) metres of a basketball based on horizontal distance (d) metres, from the player can be modeled by the relation $h=-0.09 d^{2}+0.9 d+2$.
a) What is the maximum height of the basketball? (Hint: complete the square, to find the vertex)
b) What is the horizontal distance of the basketball when it is at maximum height?
c) At what horizontal distance is the ball 3 m high? Round to the nearest tenth.

The remaining questions must be answered by determining a quadratic model, then solving it.

8. Two integers differ by 31 . The sum of the squares of the integers is 485 . Find the integers.
9. The area of a triangle is $18 \mathrm{~cm}^{2}$, and the height is 3 cm greater than the base. Find the length of the base, to the nearest hundredth of a centimetre.
10. The length of a rectangular flower garden is 2 metres more than twice the width. The area of the flower bed is $6 \mathrm{~m}^{2}$. Find the exact dimensions of the flower bed.
11. The municipal Parks Department is planning a new flower bed outside city hall. It will be rectangular with dimensions 9 m by 6 m (as shown in the diagram). The flower bed will be surrounded by a path of constant width (x metres) with the same area as the flower bed. Find x.

