CHAPTER 1 EXAM REVIEW- Extended Solutions

(Revised Fall 2016)

1. e

2. a 3. h

4. b

5. c

6. d

7. i

8. f

9.

The point of intersection is (-2, 5).

- a) C = 40h + 70 (Pool BoyZ) C = 50h + 50 (KemiKal)
- b) the solution is (2, 150)
- c) For two hours of labour, the cost will be the same for both companies.
- d) Pool BoyZ is cheaper for all times greater than 2 hours.

11.

Simplify both equations

(1)
$$2x - 8 + y = 6$$

(2)
$$3x-2y+6=13$$

Solve (1) for y

(3)
$$y = -2x + 14$$

Sub (3) into (2)

$$3x - 2(-2x + 14) + 6 = 13$$

$$c - 2(-2x + 14) + 6 = 13$$

$$y = -2(5) + 14$$

$$3x + 4x - 28 + 6 = 13$$

$$y = -10 + 14$$

$$7x = 35$$

$$y = 4$$

$$x = 5$$

$$\therefore x = 5$$
 and $y = 4$

Sub x = 5 into (3)

Check

$$LS = 2(x-4) + y \qquad RS = 6$$

$$LS = 2(5-4) + 4$$

$$LS = 2(1) + 4$$

$$LS = 6$$

$$LS = 3x - 2(y - 3)$$
 $RS = 13$

$$LS = 3(5) - 2(4-3)$$

$$LS = 15 - 2(1)$$

$$LS = 13$$

:: LS = RS for both equations the solution x = 5, y = 4 is correct.

12. Let x represent the amount of the 25% copper alloy used, and y represent the amount of the 50% alloy used.

$$x + y = 1500$$

0.25 $x + 0.5y = (0.4)(1500)$

Solve using substitution or elimination (elimination is shown here)

(1)
$$x + y = 1500$$

(2) $\times 4$ $x + 2y = 2400$
 $= -900$ subtract $-y = -900$ $y = 900$ solve $y = 900$ solve $y = 900$

To make 1500 g of an alloy that is 40% copper,

600 g of the 25% copper alloy and 900g of the 50% copper alloy should be used.

13. Let x litres represent the number of litres of the 25% acidic solution to use, and y represent the number of litres of the 50% acidic solution to use.

$$x + y = 500$$

0.25 $x + 0.5y = (0.35)500$

Solve using substitution or elimination (substitution is shown here)

Sub (3) into (2)
Solve (1) for y
$$0.25x + 0.5(500 - x) = 175$$
 sub x = 300 into (3)
(3) $y = 500 - x$ $0.25x + 250 - 0.5x = 175$ $y = 500 - 300$
 $-0.25x = -75$ $y = 200$

To make the 35% acidic solution, Chris should mix 300 L of the 25% solution and 200 L of the 50% solution.

14. Let the speed of the houseboat in still water (no current) be h, and the speed of the river's current be c, both in kilometres per hour.

Upstream:
$$48 = (h - c) \times 6$$

Downstream: $48 = (h + c) \times 4$

$$8 = h - c$$
 (divided both sides by 6)
 $12 = h + c$ (divided both sides by 4)

Solve by elimination

$$8 = h - c$$

$$12 = h + c$$

$$add 20 = 2h$$

$$10 = h$$
sub $h = 10$ into $8 = h - c$

$$8 = 10 - c$$

$$-2 = -c$$

$$2 = c$$

The houseboat travelled at 10 km/h in still water, and the river current was 2 km/h.

15. Let f be the speed of the fishing boat in still water, and c be the speed of the river's current.

Upstream:
$$72 = (f-c) \times 4$$

Downstream: $72 = (f+c) \times 3$

$$18 = f - c$$
 (divided both sides by 4)
 $24 = f + c$ (divided both sides by 3)

Solve by elimination

$$\begin{array}{rcl}
18 = f - c & \text{sub } f = 21 \text{ into } 18 = f - c \\
\underline{24 = f + c} & 18 = 21 - c \\
add & 42 = 2f & -3 = -c \\
21 = f & 3 = c
\end{array}$$

The fishing boat's speed in still water was 21 km/h, and the river's current was 3 km/h.