1. e
2. a
3. h
4. b
5. c
6. d
7. i
8. f
9.

The point of intersection is $(-2,5)$.
10.

11.

Simplify both equations
(1) $2 x-8+y=6$
(2) $3 x-2 y+6=13$

Solve (1) for y
(3) $y=-2 x+14$

Sub (3) into (2)
$3 x-2(-2 x+14)+6=13$
$3 x+4 x-28+6=13$
$7 x=35$
$x=5$
$\therefore x=5$ and $y=4$

Check

$$
\begin{aligned}
& L S=2(x-4)+y \quad R S=6 \\
& L S=2(5-4)+4 \\
& L S=2(1)+4 \\
& L S=6
\end{aligned}
$$

$$
\begin{aligned}
& L S=3 x-2(y-3) \quad R S=13 \\
& L S=3(5)-2(4-3) \\
& L S=15-2(1) \\
& L S=13
\end{aligned}
$$

$\because L S=R S$ for both equations the solution $x=5, y=4$ is correct .
12. Let x represent the amount of the 25% copper alloy used, and y represent the amount of the 50% alloy used.

$$
x+y=1500
$$

$0.25 x+0.5 y=(0.4)(1500)$
Solve using substitution or elimination (elimination is shown here)

(1) $x+y=1500$	
(2) $\times 4 \quad x+2 y=2400$	sub y = 900 into (1)
) $\times 4 \quad x+2 y=2400$	$x+900=1500$
subtract -y $=-900$	$x=600$
solve $\quad y=900$	

To make 1500 g of an alloy that is 40% copper,
600 g of the 25% copper alloy and 900 g of the 50% copper alloy should be used.
13. Let x litres represent the number of litres of the 25% acidic solution to use, and y represent the number of litres of the 50% acidic solution to use.

$$
\begin{aligned}
& x+y=500 \\
& 0.25 x+0.5 y=(0.35) 500
\end{aligned}
$$

Solve using substitution or elimination (substitution is shown here)
Sub (3) into (2)

Solve (1) for y	$0.25 x+0.5(500-x)$	$=175$	
(3) $y=500-x$	$0.25 x+250-0.5 x$	$=175$	
$-0.25 x$	$=-75$	$y=500-300$	
x	$=300$		$y=200$

To make the 35% acidic solution, Chris should mix 300 L of the 25% solution and 200 L of the 50% solution.
14. Let the speed of the houseboat in still water (no current) be h, and the speed of the river's current be c, both in kilometres per hour.

Upstream: $48=(h-c) \times 6$
Downstream: $48=(h+c) \times 4$

$$
8=h-c \quad(\text { divided both sides by } 6)
$$

$12=h+c \quad$ (divided both sides by 4)
Solve by elimination

$$
\left.\begin{array}{rlrl}
8 & =h-c & \text { sub } h & =10 \text { into } 8=h-c \\
12 & =h+c & 8 & =10-c \\
\text { add } 20 & =2 h & -2 & =-c \\
& 10 & =h & 2
\end{array}\right)
$$

The houseboat travelled at $10 \mathrm{~km} / \mathrm{h}$ in still water, and the river current was $2 \mathrm{~km} / \mathrm{h}$.
15. Let f be the speed of the fishing boat in still water, and c be the speed of the river's current.

Upstream: $72=(f-c) \times 4$
Downstream: $72=(f+c) \times 3$
$18=f-c \quad($ divided both sides by 4)
$24=f+c \quad$ (divided both sides by 3)
Solve by elimination
$\left.\begin{array}{rlrl}18 & =f-c & \text { sub } \mathrm{f}=21 \text { into } 18=\mathrm{f}-\mathrm{c} \\ 24 & =f+c \\ \text { add } & 42 & =2 f & 18\end{array}\right)$

The fishing boat's speed in still water was $21 \mathrm{~km} / \mathrm{h}$, and the river's current was $\mathbf{3} \mathbf{~ k m} / \mathrm{h}$.

