Directions: Fold along the dotted line. Place a sheet of paper under this sheet. Check your answers by unfolding the paper. Repeat as often as needed.

Pythagoras: In a triangle $\triangle A B C$ with $\angle A=90^{\circ}$
Given $P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right)$, state
Length Formula:
Midpoint Formula

Slope
Parallel Lines
Perpendicular Lines Perpendicular lines have

Slope y-intercept Formula

The equation of a line with slope m and y-intercept b is
Circle The equation of a circle with centre (0,0) and radius r

Quadratic Relation with $a \neq 0$
Parabola with vertex (h,k)

Parabola with x-intercepts r and s

Parabola in standard form

Quadratic Formula: If $a x^{2}+b x+c=0$ then Trigonometry

Similar Triangle Ratios

If $\triangle A B C \sim \triangle P Q R$ then
In a right triangle, with reference angle $\angle A$
(SOHCAHTOA)

SINE LAW
COSINE LAW
In any $\triangle A B C$
In any $\triangle A B C$
$a^{2}=b^{2}+c^{2}$
$\sqrt{\Delta x^{2}+\Delta y^{2}}$ or $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
$\frac{\Delta y}{\Delta x}$ or $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
equal slopes.
slopes that are negative reciprocals OR $m_{1} \times m_{2}=-1$
$y=m x+b$

$$
x^{2}+y^{2}=r^{2}
$$

$y=a(x-h)^{2}+k$
$y=a(x-r)(x-s)$
$y=a x^{2}+b x+c$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}$
$\sin A=\frac{o p p}{h y p} \quad \cos A=\frac{a d j}{h y p} \quad \tan A=\frac{o p p}{a d j}$
$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
$a^{2}=b^{2}+c^{2}-2 b c \cos A$

