

Ch. 2 Probability Exam Review Question Set (Revised Fall 2016)

- 1. Match each term with its definition.
 - A. event

B.

MBF 3CI

- C. outcome experimental probability D.
 - Probability F.

E.

Simulation Trial

ANSWER	DEFINITION
	A possible result of an experiment.
	A probability experiment that models a real-life situation.
	One round of a probability experiment.
	A measure of the likelihood that an event will occur.
	A probability result determined using the outcomes of a simulation.

- 2. Match each term with its definition.
 - G. raw data
 - experimental probability H.
 - I. outcome

K. Statistic

Ratio

J.

L. theoretical probability

ANSWER	DEFINITION				
	number of successful trials				
	total number of trials				
	The number of successful outcomes as a fraction of the total number of possible outcomes.				
	A comparison of two quantities measured in the same units.				
	Unprocessed pieces of information.				
	A value from the processing (calculation) of raw data.				

3. Identify the type of probability in each question.

А.	experimental probability B. theoretical probability				
ANSWER	QUESTION				
	You roll a six- sided die 30 times to determine how many times a 3 is rolled.				
	You record students entering the school office to determine the probability of a girl entering the office.				
	You check the answers of five multiple-choice tests to find the probability of the answer being "C."				
	If you roll a six-sided die 60 times, the number 1 should turn up 10 times.				
	Using only the 13 spade cards from a standard deck of playing cards,				
	you determine that the chance of drawing an ace is about 7.7%.				
	Based on a baseball player's record of striking out once every four times at bat,				
	you calculate that there is a 25% chance that he will strike out this time.				

Recall:

number of trials an eventoccurred **Experimental probability =** number of trials

4. Jessica plays softball. In 25 at-bats she got 14 hits. What is Jessica's *experimental probability* of getting a hit?

Recall:

number of successful outcomes for the event **Theoretical probability** = overall number of possible outcomes

Suppose you roll a die. The <u>theoretical probability</u> that you roll a "5" is $\frac{1}{6}$, since the overall number of possible outcomes is 6 and the number of ways to successfully get a "5" is only 1.

5. Multiple Choice. If the probability of having rain tomorrow is 60%, what is the probability of not having rain tomorrow?

A) $\frac{1}{5}$	B)	$\frac{2}{5}$	C) $\frac{3}{5}$	D)	$\frac{6}{10}$
------------------	----	---------------	------------------	----	----------------

- 6. A fair die is rolled. Determine the <u>theoretical probability</u> that an odd number is rolled. Write your answer as a fraction in lowest terms.
- 7. Two fair dice (a blue and red one) are rolled and the sum of the outcomes on the top of each die is observed. Calculate, in lowest terms:
 - a) P(sum of 5)
 - b) P(sum of 5 or sum of 10)
 - c) P(not getting a sum of 5)

Use the chart on the right to help you.

		First Die					
1	sum	1	2	3	4	5	6
	1	2	3	4	5	6	7
<u>bi</u>	2	3	4	5	6	7	8
	3	4	5	6	7	8	9
Second	4	5	6	7	8	9	10
Š	5	6	7	8	9	10	11
	6	7	8	9	10	11	12
		,			10		

- 8. A stable has 15 horses available for trail rides. Of these horses, 6 are brown, 5 are white, and the rest are black. If Jasmine selects one horse at random, what is the probability that this is a) a black horse?b) not a black horse?c) either a black or a brown horse?
- 9. There are 100 students in grade 9, 125 in grade 10, 225 in grade 11, and 170 in grade 12. At a school assembly, every student at the assembly entered their name for a door prize. If selection is random, what is the probability that the prize will be won by
 - a) a grade 9 student?
 - b) a grade 11 or 12 student?
 - c) a grade 12 student, if all grade 11 students are disqualified from winning?

Recall: In a probability experiment, if trials are repeated "again and again," the experimental probability will tend to equal the theoretical probability. This is known as the … <u>LAW OF LARGE NUMBERS</u>. *Note: when I say "again and again," I really mean "thousands and thousands and thousands of trials!"*

- 10. **Multiple Choice.** In a probability experiment, a fair coin is flipped (at random) several times. In the first several trials the outcomes occurred:
 - "Heads", "Heads", "Heads", "Heads", "Heads",

The next outcome will be:

- A) "Heads" B) "Tails" C) impossible to predict since the event is random
- 11. Multiple Choice. If a fair coin is flipped 25000 times,

by the Law of Large Numbers, one can expect the number of "Tails" to be *about*:A) 25000B) 12500C) neither A) nor B) are correct

- 12. A die was rolled 100 times. The results are shown in the table.
- a) Determine the *experimental probability* of each outcome.
- b) What is the theoretical probability of each outcome?
- c) Could the die be "loaded" (or "unfair")? Explain.
- d) What could you do to verify your conclusion in part c)?

13. Find your Unit 2 Probability Test from your notebook.

Go through each question, AND make sure you understand how to get the correct answer.

FINAL ANSWERS

1) C	2) H	3) A	4) 56%	5) B Note: $\frac{2}{5} = 40\%$	6) $\frac{3}{6} = \frac{1}{2}$
E	L	А	7) a) $\frac{1}{9}$ b) $\frac{7}{36}$ c) $\frac{8}{9}$	8) a) $\frac{4}{15}$ b) $\frac{11}{15}$ c) $\frac{2}{3}$	9a) $\frac{5}{31}$ b) $\frac{395}{620} = \frac{79}{124}$ c) $\frac{34}{79}$
F	J	А	10) C 11) B	12) a) $\frac{3}{100}; \frac{11}{50}; \frac{3}{50}; \frac{9}{25};$	$\frac{4}{25}$; $\frac{17}{100}$ b) $\frac{1}{6}$ for every outcome.
D	G	В		bers 2 and 4 were rolled almost	
В	Κ	В	MORE ANALYSIS	IS REQUIRED. See part d).	
		А			

12 d) Based on the Law of Large Numbers, conduct thousands and thousands and thousands of trials to see if the experimental probability remains different from the theoretical probability; if it does, then it is loaded or unfair. In theory, if the die is rolled thousands of times, each outcome will occur equally as each other outcome.

Outcome	Frequency
1	3
2	22
3	6
4	36
5	16
6	17