1.7.4: Evaluating Logarithms Homework p. 344 (also use \#9 for tomorrow's homework)

6. Simplify.

a) $\log _{6} 9+\log _{6} 4$
b) $\log _{5} 15-\log _{5} 3$
c) $\log _{4} 2+\log _{4} 32$
d) $\log _{2} 48-\log _{2} 6$
e) $\log _{3} 54-\log _{3} 2$
f) $\log _{3} 9+\log _{3} 9$

1 7. Solve each equation to 5 decimal places, and check.
a) $2^{x}=11$
b) $3^{x}=17$
c) $6^{x}=5$
8. a) Solve the equations in each list.
l) $3^{x}=2,3^{x}=4,3^{x}=8,3^{x}=16$
ii) $3^{x}=2,9^{x}=2,27^{x}=2,81_{1}^{x}=2$
b) How are the roots of the equations in each list in part a related? Explain.
9. Solve.
a) $5^{x-1}=9$
b) $2^{x+3}=6$
c) $7^{-x}=3$
d) $3^{1-x}=5$
e) $\left(\frac{1}{8}\right)^{x}=25$
f) $5^{3 x}=41$
10. Express:
a) 7 as a power of 3
b) 5 as a power of 2
c) 29 as a power of 2
d) 77 as a power of 8
e) 3 as a power of 0.5
f) 0.45 as a power of 6
11. Determine each logarithm to 5 decimal places, and check.
a) $\log _{3} 5$
b) $\log _{2} 12$
c) $\log _{6} 55$
d) $\log _{2} 3$
e) $\log _{2} 20$
f) $\log _{2} 5$
13. Alex invests $\$ 50000$ at an interest rate of 7% compounded monthly. Laura invests $\$ 40000$ at 9.5% compounded annually. After how many years will the two investments be equal in value?
14. a) Determine each quotient to 5 decimal places.
I) $\frac{\log _{2} 20}{\log _{2} 3}$
III) $\frac{\log _{6} 20}{\log _{6} 3}$
iii) $\frac{\log _{8} 20}{\log _{8} 3}$
b) Refer to Example 1, where the solution contains the line $x=\frac{\log 20}{\log 3}$. Compare the quotients in part a with this value of x. What do you notice?
c) In part b, you should have found that the quotients are the same, regardless of the base used for the logarithms. Explain why this is true.
d) The L key on your calculator determines logarithms of numbers to a base different from 10. Use this key to solve the equation in Example 1.

