Before we begin, are there any questions from last day's work?

Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) solve problems involving exponential equations graphically, including problems arising from real-world context.
- b) find the point of intersection of two exponential functions.
- c) explain the solution in terms of real-life context.

1.3	.1:	MA	TCH	ΙТ

Date:

<u>Teacher Instructions:</u> Photocopy the charts. Cut up the charts into its cells. Give each student a piece of the chart. Tell them to find the students who are holding the matching application, system of equations, solution to the system, and graph.

Tell them to find the stadents who	are notating the matering	application, system of	
Liam bought a cell phone plan charging \$40 per month for unlimited minutes. Isaac bought a plan charging \$10 per month plus \$0.15 per minute. How many minutes would they use if they paid the same amount on their monthly bill?	C = 40 C = 0.15t + 10	(200, 40)	30 60 90 120 150 180 210 240 270 300
Ella ordered wedding invitations at her neighbourhood printing shop for \$55 plus \$2.50 per invitation. Lyndi ordered wedding invitations from her Uncle Shawn for \$3 per invitation. How many invitations would have to be ordered so that the cost would be the same for both women?	C = 55 + 2.5x C = 3x	(110, 330)	400 360 320 280 240 200 180 120 80 40 20 40 60 80 100 120 140
Sara states that the cost of driving her car for a year is \$1000 plus \$0.22 per kilometre. Gord states that the cost of driving his car is \$700 plus \$0.25 per kilometre. However, they both argue that the annual cost of driving their car is the least. How many kilometres driven would make their costs equal?	C = 1000 + 0.22x C = 700 + 0.25x	(10000, 3200)	4000 3600 3200 2800 2400 1200 800 400 2000 4000 6000 8000 10000 12000 14000

The length of a rectangle				
is twice its width and its				
perimeter is 72 cm. Find				
the length and width.				

2x + 2y = 72

The club sold tickets and then counted their money. They had 46 coins, all loonies and toonies. The value of the money was \$72 in total. How many of each kind of coin was there?

$$x + y = 46$$

 $x + 2y = 72$ (20, 26)

One store pays their workers \$50 per week plus 10% of all their sales. A different store pays their employees \$90 per week and 1% of all their sales. How much must an employee sell in order to be paid the same at both stores?(nearest \$)

$$y = 0.1x + 50$$

 $y = 90 + 0.01x$ (444, 94)

1.3.2: Comparing Growths

Investigation

Audrey invested \$1000 at 9% per annum compounded annually. Her daughter invested \$2000 at 2.5% per annum compounded annually at the same time. How long did it take for the investments to be of equal value?

Materials:

Graphing calculator, Formula for Amount of an Investment $= P(1+i)^n$

Method: Number Questions

- 1. The equation for the amount of Audrey's investment is $A=1000(1+0.09)^n$
- 2. The equation for the amount of Audrey's daughter's investment is $D=2000(1+0.025)^n$
- 3. What type of function is each of the above? **each is an exponential function
- 4. Describe the expected shape of the graph of each.
 - Each graph will be an *increasing* exponential curve.
- 5. In the Y= window, enter the two equations above.

Set the window as follows:

Sketch the graph from the graphing calculator on the grid at the right. (Possible alternate grid)

(see below right)

To find the point of intersection, press, 72, TRACE, 5:Intersect, then press ENTER three times.

- 6. The point of intersection is (11.27, 2641.95)
- 7. Explain the significance of the point of intersection in relation to the question.
- → It took 11.27 years for both investments to be equal in value.

$$A = P = 0.12$$
 $1 = 0.12$
 $1 = 4 \times 2$
 $1 = 8$

Review the learning goals. Were we successful today? Homework: Worksheet 1.3.3

Answer any remaining homework questions Students ask for "at desk" clarification.

1.3.3: Crossing Curves

Date:

Use the method of graphing on the graphing calculator to answer the following questions.

Adjust the window settings as appropriate for each question. [Consider using 'Zoom Fit' to help with this.]

1. Determine the point of intersection of each pair of functions graphically.

a)
$$y = 2^{x+4}$$
 and $y = 2^7$
Window $(0, 5, 1, 0, 500, 50, 1)$

d)
$$f(x) = 6^{-x}$$
 and $f(x) = 8^{x+3}$
Window (-5, 5, 1, -5, 50, 5, 1)

b)
$$y = 9^6$$
 and $y = 27^x$
Window (0, 5, 1, 0, 700 000, 10 000, 1)

e)
$$y = 3^{x+15}$$
 and $y = 27^{2x}$
Window (-2,5,1, -70 000 000, 600 000 000, 50 000 000,1)

c)
$$f(x) = 6^{-x}$$
 and $y = 36^{5}$
Window (-12, 12, 1, 0, 70 000 000, 100 000, 1)

f)
$$y = -x + 1$$
 and $y = 6^{-x}$
Window (-0.5, 1.5, 0.1, -0.5, 1.5, 0.1, 1)

- 2a) Consider question 1(a) and the solution you determined. How is the solution related to the expressions given for the exponents?
 - b)Suggest a rule for solving exponential equations without graphing.

- c)Can you solve questions (b) through (e) in the same way? Why or why not?
- 3. Al has saved \$5000. He checked the website of a prominent bank. The rate for a savings account is 0.05% per annum, while the rate for a GIC is 3.85% per annum, both compounded annually. Al doesn't believe he wants to invest all \$5000 for 5 years. He compared saving \$5000 in the savings account to saving \$4500 in the GIC. How long will it take for the investments to be equal in value?

4. The SarJen marketing company has determined that the effect on customers of a particular advertising campaign is modelled according to the following function $A = 100 \left(1.7^{-0.08x}\right)$ where x is the time in weeks since the end of the advertising campaign and A is the value on their advertising rating scale. Calculate the number of weeks until the effect of the advertising will fall to half (or a rating of 50) [represent the 50 with y = 50 as function #1 on the graphing calculator].

5. For the following system of equations find the point of intersection.

ii)
$$y = x^2$$

iii)
$$y = 2^x$$

Check that the point of intersection found is actually a point on all three functions. Describe the rate of increase for each of the three functions.

Angwer

- 1a) (3, 128) b) (4, 531 441) c) (-10, 60 466 176) d) (-1.61, 17.95) e) (3, 387 420 489)
- f) (0, 1) and (0.729, 0.2707)
- 2) [a,b,c,e: Yes], [d,f: Not Possible]
- 3) 2.826 years
- **4**) 16.32 weeks

5) (2, 4)