Statistics Warm Up

- 1. List the first nineeven integers greater than zero Ans:
- 2. Find the mean of the first nine even integers greater than zero.

Before we begin, are there any questions from last day's work?

Today's Learning Goal(s): Word Wall

By the end of the class, I will be able to:

- a) understand the effect of an outlier on a small vs. large set of data
- b) calculate the range for a set of data

Use Excel File:

Central Tendency - With Outliers, Large vs Small Data Sets

This	is a <i>sı</i>	nall-s	ized (data s	et.						
4	5	7	2	9	3	6	9	8	5	mean	5.5
8	5	6	2	3	9	7	3	6	2	median	5.5

This is	s a <i>sn</i>	nall-s	ized c	lata s	et.						
4	5	7	2	9	3	6	99	8	5	mean	10.0
8	5	6	2	3	9	7	3	6	2	median	5.5

iis is	a LA	RGE-s	ized	aata	set.								
9	8	5	3	1	4	6	7	8	9	8	9	mean	6.
9	9	4	9	8	4	10	7	2	1	10	8	median	6.
3	1	4	2	10	3	8	9	9	4	5	2		
2	5	9	8	6	5	2	9	7	10	10	3		
9	4	3	3	7	7	8	3	8	4	10	8		
8	6	9	5	3	7	10	10	8	4	10	2		
10	5	1	7	7	9	5	9	9	4	10	10		
6	2	8	7	8	9	2	1	7	10	6	8		
7	2	10	9	7	3	5	8	5	7	8	10		
3	3	6	9	4	10	2	1	2	1	3	6		
7	8	7	3	9	9	8	6	3	5	4	5		
8	3	3	10	10	1	6	7	8	4	5	10		
7	8	7	9	10	8	8	9	5	6	10	5		
4	6	8	1	8	1	3	6	4	5	8	9		
9	2	7	8	8	6	4	9	9	7	4	7		
1	2	4	1	5	7	5	5	7	6	9	8		
1	5	9	6	2	2	10	8	4	3	2	6		
8	5	9	7	4	6	8	9	1	8	1	5		
8	4	1	2	4	9	4	10	9	3	6	7		
5	4	8	6	3	5	9	6	5	8	9	10		
2	9	8	9	9	8	2	10	10	6	1	8		
4	3	5	5	2	9	1	8	6	6	4	7		
4	9	2	8	8	2	6	2	4	6	10	2		
7	2	10	9	3	6	10	2	3	5	4	6		
1	3	5	2	5	10	4	4	5	5	4	6		

nis is	a LA	RGE-	sized	data	set.								
9	8	5	3	1	4	6	7	8	9	8	99	mean	6.3
9	9	4	9	8	4	10	7	2	1	10	8	median	6.0
3	1	4	2	10	3	8	9	9	4	5	2		
2	5	9	8	6	5	2	9	7	10	10	3		
9	4	3	3	7	7	8	3	8	4	10	8		
8	6	9	5	3	7	10	10	8	4	10	2		
10	5	1	7	7	9	5	9	9	4	10	10		
6	2	8	7	8	9	2	1	7	10	6	8		
7	2	10	9	7	3	5	8	5	7	8	10		
3	3	6	9	4	10	2	1	2	1	3	6		
7	8	7	3	9	9	8	6	3	5	4	5		
8	3	3	10	10	1	6	7	8	4	5	10		
7	8	7	9	10	8	8	9	5	6	10	5		
4	6	8	1	8	1	3	6	4	5	8	9		
9	2	7	8	8	6	4	9	9	7	4	7		
1	2	4	1	5	7	5	5	7	6	9	8		
1	5	9	6	2	2	10	8	4	3	2	6		
8	5	9	7	4	6	8	9	1	8	1	5		
8	4	1	2	4	9	4	10	9	3	6	7		
5	4	8	6	3	5	9	6	5	8	9	10		
2	9	8	9	9	8	2	10	10	6	1	8		
4	3	5	5	2	9	1	8	6	6	4	7		
4	9	2	8	8	2	6	2	4	6	10	2		
7	2	10	9	3	6	10	2	3	5	4	6		
1	3	5	2	5	10	4	4	5	5	4	6		

MBF 3CI

3.4 Measures of Central Tendency (Day 2)

Date: Mar. 24/17

"Which measure of central tendency should I use?"

Some general guidelines:

• Outliers will affect the mean the most, especially if the sample size is small. Hence, use the median if the data contains outlier(s) in a smaller data set.

$$Mean = \frac{6+99+4+8+2}{5}$$
 Median: 2,4,6,8,99
= 119
= 23.8

• If the data are mainly symmetric, the mean and median will be close, or exactly the same, so either is fine to use. This applies in a small **or** large data set! *Ex. 6:* Calculate the mean and median for the data: 6, 7, 4, 8, 2

$$Mean = \frac{6+7+4+8+2}{5} = \frac{21}{5}$$
= 5.4

Median: 2,4,6,7,8

• Use the mode when the frequency of the data is more important than the calculated value (i.e. shoe size), and when the data is discrete (i.e. hair colour).

The **range** of a data set is the difference between the largest piece of data and the smallest.

Ex. 7: A simple random sample of car owners was performed.

Each owner was asked how old they were when they got their first car and results are summarized:

Recall interval notation: "Square brackets" = [...include the value, "Round brackets" = ...Do Not include the value. ろみ 35 to 40) Age[25 to 30) [30 to 35) [15 to 20) [20 to 25) 10 18 Frequency 12 8

a) Calculate the range of the data.

b) Approximate the mode, median and mean age for this sample.

b) Approximate the mode, median and mean age for this sample.

Mode:
$$20-27$$
 Median: Add Frequency = 50
 $\therefore 22$ $\therefore 3$ between $25 + 2 + 14$ parson

 $\therefore approx \cdot 22$
 $\therefore approx \cdot 23$
 $\therefore approx \cdot 23$
 $= 1220$
 $= 24.4$

Entertainment: pp. 136-138 #4, 5, 6, 7c (do 7a and 7b if you didn't do it last class), 9 ARE YOU CHECKING YOUR ANSWERS?