Today's Learning Goal(s):

By the end of the class, I will be able to:

a) rearrange a formula for a specified variable.

3.7.1 Connecting Formulae

Date: Mar. 29/17

Ex. 1 The formula $d = v_0 t + \frac{1}{2}at^2$ relates the distance, d, travelled by an object to its initial velocity, v_0 , acceleration, a, and the elapsed time, t. Determine the acceleration of a dragster that travels 500 m from rest in 15 s, by first isolating a,

and then by first substituting known values. Compare and evaluate the two methods.

Solutions

Method 1: Isolatea first.

$$d = v_0 t + \frac{1}{2}at^2$$

$$d = v_0 t - \frac{1}{2}at^2$$

$$d - v_0 t = \frac{1}{2} a t^2$$

$$2(d-v_0t)=at^2$$

$$\frac{2(d-v_0t)}{t^2}=a$$

$$\therefore a = \frac{2(d - v_0 t)}{t^2}$$

$$d = 500 \ m, \ t = 15 \ s, \ v_0 = 0 \ m/s$$

$$a = \frac{2((500) - (0)(15))}{(15)^2}$$

$$=\frac{1000}{225}$$

$$\doteq 4.44 \ m/s^2$$

Method 2: Substitute first.

$$d = v_0 t + \frac{1}{2}at^2$$

$$d = 500 \ m, \ t = 15 \ s, \ v_0 = 0 \ m/s$$

$$500 = (0)(15) + \frac{1}{2}a(15)^2$$

$$500 = \frac{1}{2}a(225)$$
 (000 = 225 &

$$500 = 112.5 \ a$$

$$\frac{500 = 112.5 \ a}{\frac{500}{112.5}} = a \qquad \frac{(000)}{2a5} = a$$

$$a \doteq 4.44 \ m/s^2$$

(Continue to work ahead on Review 3.9.1)

Questions from last day's work

the dimensions of the enclosure are 10 m by 30 m, OR 15 m by 20 m.

- 3. The function, $h = t^4 2t^3 t + 2$, models the path of a seagull trying to catch fish, where h represents the seagull's height above the water in metres and t represents the time in seconds.
 - a) At what height is the seagull when it first sees the fish?
 - b) When does the seagull hit the water?
 - c) At what time does the seagull leave the water with the fish in its beak?

. He sea gull is a mapove the water.

-ithe seagulf hits the water at 13d. (and tenes the water at 25ec.)

- 4. Melissa is running a ski trip during the exam break
 - The bus holds 40 students and if she charges \$250 per student the bus will be filled. For every \$25 increase in the price she charges students, two fewer students will go on the trip.
 - a) Write an equation to model the Melissa's revenue.
 - b) Determine the maximum revenue
 - c) How many students need to go on the trip for Melissa to earn \$8800?

the max. revenue would occur when ticket price is set at \$375 (the max. revenue would be \$11250, from 30 tickets being sold. 11250÷375=30)

c)
$$8800 = -0.08p^{2} + 60p$$

 $0.08(p^{2} - 60p + 8800 = 0$
 $0.08(p^{2} - 750p + 11000) = 0$
 $0.08(p - 550)(p - 200) = 0$
 $0.08(p - 550)(p - 200) = 0$

to earn a revenue of \$8800, ticket price must be set at \$550

(resulting in only 16 tickets being sold 8800÷550=16) or the ticket price must be set at \$200

(resulting in 44 tickets needing to be sold 8800÷200=44) [What is the problem with this idea?]

Melissa is best off setting the price at \$375

