Ap	ril	10	, 20	17

T		•	\sim 1	/ \	
Lodo	T 7'C	Aarnin (α	١.
i Oua	V > L	Learning	Civai		Ι.
	J ~ —	8		(~)	, -

By the end of the class, I will be able to:
a) describe the characteristics of the graphs and equations of exponential functions.

Last day's work: pp. 235-237 #(1 – 2)ace, 3, (4 – 9)ace [14] Review p. 239

4.5 Exploring Properties of Exponential Functions

IST.

p. 240 Invesgate – students complete A – E individually (or in pairs).

A.
$$g(x) = x$$

•	•	
х	y	
-3	-3_	-2-(-3)
-2	-2 <	
-1	-1 /	-1-(-1)=
0	0	
1	1	
2	2	
3	3	
4	4	
5	5	

$$h(x) = x^2$$

		D.H.
x	y	יייען
-3	9 ~	4-9
-2	4	y-9 =-5
-1	1)ı –4:
0	0 -	0-1:
1	1	
2	4	
3	9	
4	16	
5	25	

K(x) - 2			
x	y		
-3	1/8		
-2	1/4		
-1	1/2		
0	1		
1	2		
2	4		
3	8		
4	16		
5	32		

 $k(x) = 2^x$

2	· 3
7	133
7	138

- B. $g(x) \rightarrow$ first differences are equal
 - $h(x) \rightarrow$ second differences are equal
 - $k(x) \rightarrow$ ratio of successive y-values are equal

 $R = \{ v \in \mathbb{R} \}$

$$D = \{ x \in \mathbb{R} \}$$

$$R = \{ y \in \mathbb{R} \mid y > 0 \}$$

E. $g(x) \rightarrow$ as independent variable (x) increases,

the dependent variable (y) also increases at a consistent rate

 $h(x) \rightarrow$ as independent variable (x) increases,

the dependent variable (y) decreases until x = 0 and then increases

 $k(x) \rightarrow$ as independent variable (x) increases,

the dependent variable (y) also increases, slowly at first and then quickly.

k(x) = 2	2 ^x	ISTDIFF and Diff
х	y]
-3	1/8	1/8-8
-2	1/4	
-1	1/2	777
0	1	7 3 4
1	2	としき
2	4	22
3	8	543 s
4	16	2824
5	32	P16>9

k(<i>x</i>) =	2 ^x	y ratios
x	y	
-3	1/8	4-8=2
-2	1/4	24.0
-1	1/2 -	\$ = 4 = 2
0	1	
1	2	
2	4	
3	8	
4	16	
5	32	

$$y = x$$
 $y = x^2$ $y = x^2$ $y = 2^x$

- G. For all 3 functions, $D = \{x \in \mathbb{R}\}$ and $R = \{y \in \mathbb{R} \mid y > 0\}$. The y-intercept = 1, there are no x-intercepts, and there is a Horizontal Axis of Symmetry [HASM] at y = 0 (x-axis).
- H. $y = 10^x$ increases fastest, and $y = 2^x$ has the slowest rate of increase.

- J. All properties remain the same as G.
- K. As the values of x increase the graphs with fractional bases decrease (decay).

Summary: Properties of $y = b^x$

- b > 0
- y-int = 1
- HASM: y = 0 (x-axis) [Horizontal Axis of Symmetry]
- D = $\{x \in \mathbb{R}\}$
- $R = \{y \in \mathbb{R} \mid y > 0\}$
- Increasing when b > 1 (growth)
- The greater the value of b, the faster the growth
- Decreasing when 0 < b < 1 (decay)
- Equal ratios of successive y-values

For tomorrow, think about the general form of $y = a(b^x) + c$ and how the values of a and c relate to the graphs we drew today.

Are there any Homework Questions you would like to see on the board?

Last day's work:

pp. 235-237 #(1 – 2)ace, 3, (4 – 9)ace [14] Review p. 239

Today's Homework Practice includes:

pp. 240-241 A - P p. 243 #1, 2 6e 8a

9ac

p. 236

6. Simplify. Express answers with positive exponents.

e)
$$\left(\frac{(32x^{5})^{-2}}{(x^{-1})^{10}}\right)^{0.2}$$

$$= \frac{(32x^{5})^{-0.4}}{(x^{-1})^{2}}$$

p. 237

8. Evaluate. Express answers in rational form with positive exponents.

Evaluate. Express answers in rational form with positive exponents.

a)
$$(\sqrt{10000x})^{\frac{3}{2}}$$
 for $x = 16$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

$$= ((10000x)^{\frac{3}{4}})^{\frac{3}{4}} = (0000x)^{\frac{3}{4}}$$

$$= (10000x)^{\frac{3}{4}}$$

$$= (100$$

p. 237

9. Simplify. Express answers in rational form with positive exponents.

a)
$$(36m^4n^6)^{0.5}(81m^{12}n^8)^{0.25}$$

= $36^{\frac{1}{2}}m^3n^3 \cdot 81^{\frac{1}{2}}m^3n^3$
= $\sqrt{36}$ $\sqrt{81}$ m^{3+3} $\sqrt{3}+2$
= $6\cdot 3$ m^5 n^5
= 18 m^5 n^5

c)
$$\frac{\sqrt{64a^{12}}}{(a^{1.5})^{-6}}^{\frac{1}{3}}$$

$$= \frac{(64a^{12})^{\frac{1}{3}}}{(a^{3})^{-6}}$$

$$= \frac{(64a^{12})^{\frac{1}{3}}}{(a^{3})^{-6}}$$

$$= \frac{3}{64a^{12}}^{\frac{1}{3}}$$

$$= \frac{3}{64a^{12}}^{\frac{1}{3}}$$

$$= \frac{3}{64a^{12}}^{\frac{1}{3}}$$

$$= \frac{4a^{10}}{a^{10}}$$