4.7 Applications Involving	Exponential Functions (Spring	2017	-s17
			, ,	

April	13,	2017	7

Date:	
-------	--

Today's Learning Goal(s):

By the end of the class, I will be able to:

a) use exponential functions to model exponential growth and decay.

Last day's work: pp. 251-253 #(1,2)ab, 3, 4ab, 5ab, 9

(Oponal Wkst 4.6 Extra Pracce
)

(text quesons at end of lesson)

Order Change Spring 2017 [12 - 14]

4.7 Applications Involving Exponential Functions

Date: 40C.13/17

Ex.1 You invest \$1000 at 8% /a compounded annually. How much will you have after 20 years?

					_				
# of years	0	1	2	3			n		
Amount	1009	1080	1166.46	17264					
$1000(1.08)^{1}_{1000(1.08)^{2}}1000(1.08)^{3}$				10	$1000(1.08)^n$				
A,=100	06/1-0	8) A	_= (0gi	0(1.08))	A	(a)	,	
= 70	180		a =116	6.40		5000		/	/
I1=1000	(0.0%)	(1)	= (00	00(1.08)(1.08	2500			
I1=1000 = 80 += 64I		п	= 10	00/(.0	8)3	2500			
A	=1000	$(1.08)^n$					5 10	15 20	25 n
Initia	al Amount					Initial A	mount	1000	
	(Growth Fact	cor			Growth	Rate	.08	
		6)1.	fn=	1 (1.08 70	. 3.	Growth	Factor	1.08	
		A:	1000	(1.08	()40				
		-	= 466	0.95	7				
		=	$\dot{\underline{z}}$ \$ $_{arphi}$	66 O. 9	6				\$4660.96

Ex.2 A superball loses 10% of its height after each bounce. It was dropped from 12 *m*.

Model the bounce height with a decay function.

Each bounce is 90% of the previous bounce.

The function $f(x) = a(b^x)$ can be used as a model to solve problems involving exponential growth and decay.

- f(x) = a (bx) Where a is the initial value, b is the growth factor and x is the number of compounding periods.
- Ex.3 A hockey card is purchased in 1990 for \$5.00. The value increases by 6% each year.

 Write an equation and determine it's value in 2011.

$$V = 5(1.06)^{n-1990}$$

39 213

Ex.4 In 1980 the population of the town of St. Albert, Alberta was 20 000. If the town grows at a rate of 2% a year, what was the population in 2014?

There are growth and decay applications that involve doubling times or half-lives. The formula can be altered to:

$$N(t) = N_o(2)^{\frac{t}{d}} \leftarrow \text{total time}$$

$$N(t) = N_o \left(\frac{1}{2}\right)^{\frac{t}{d}} \leftarrow \text{amount of time to have } 50\% \text{ left}$$
= half-life

Ex.5 A biology experiment starts with 1000 cells. After 4 hours the count is estimated to be 256 000. What is the doubling period for the cells?

$$A = 1000 (2)^{\frac{1}{4}}$$

$$A = 1000 (2)^{\frac{1}{$$

: the doubling period for cells is a 1/2 hour.

Are there any Homework Questions you would like to see on the board?

Last day's work: pp. 251-253 #(1,2)ab, 3, 4ab, 5ab, 9
(Oponal Wkst 4.6 Extra Pracce)
(text quesons on following screens)

Today's Homework Practice includes: pp. 261-262 # 1 – 8

QUIZ NEXT CLASS