Before we begin, are there any questions from last day's work?

263 11

Today's Learning Goal(s):

By the end of the class, I will be able to:

a) Find the zeros (*x*-intercepts) of a quadratic relation by factoring.

Reminder: SWYK 5.3 *Tomorrow* (Also on Factoring) (And includes yesterday's lesson)

P.262
$$\pm (1)$$
 $h = -4.9t^{2} + 19.6t$
 $h =$

5.5 Thex-Intercepts of a Quadratic Relation MBF 3CI [Intercept Formy = a(x-r)(x-s)]

Date: May 1//7

Ex. 1 Given the parabola with equation $y = 2x^2 + 12x + 10$.

a) convert the equation to intercept form: y = a(x-r)(x-s)

[Hint: factor the equation]

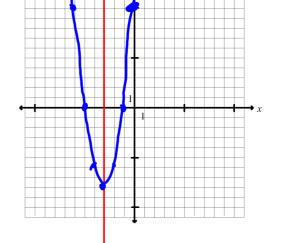
$$y = 3(x+2)(x+1)$$

= $3(x+2)(x+1)$
= $3(x+2)(x+1)$

y=ax2+bx+c Std. form

b) state the zeros (x-intercepts)

Bt
$$y=0$$
 0=2(X+5)(X+1)
 $X+5=0$ $x+1=0$
 $X=-1$


c) determine the equation of the axis of symmetry

$$X = \frac{-5+(-i)}{2}$$
= $-\frac{6}{3}$

d) determine the vertex

&+ x=-3 y=2(x+5)(x+1) =2(-3+5)(-3+1) = 2(2)(-2) =-8 : v(-3,-8)

e) sketch the parabola below

f) write the equation of the parabola in vertex form

$$y = a(x-h)^{2} + k$$

$$y = a(x+3)^{2} - 8$$

 $y = \lambda(x+3)^2 - 8$ & You can check this by expanding.

Summary

Given a quadratic relation in vertex form, $a(x-h)^2 + k$, the coordinates of the vertex are (h,k). Given a quadratic relation in standard form, $ax^2 + bx + c$, the y-intercept is 'c'.

Given a quadratic relation in intercept form, a(x-r)(x-s), the 'r' and 's' represent the intercepts.

The x-intercepts are also called thereos of the quadratic relation. [y = 0 at these points]

Note that the value of 'a' is the same in all 3 forms.

Entertainment: Oral:pp. 271-272 #1, 2 pp. 271-272 #3

$$p.272$$
 $3a) y = (x-5)(x+3)$
 $0 = (x-5)(x+3)$
 $x-5=0 \text{ or } x+3=0$
 $x=5$