Date:	
Date.	

Today's Learning Goal(s):

By the end of the class, I will be able to:

a) solve a triangle involving the Cosine Law and obtuse angles.

Last day's work: pp. 318-319 #1, 2, 3a, 4, 5ac, 7 [15,17]

^Lla

p. 318 #3a

- 3. Determine whether it is possible to draw a triangle, given each set of information. Sketch all possible triangles where appropriate. Label all side lengths to the nearest tenth of a centimetre and all angles to the nearest degree.
 - a) $a = 5.2 \text{ cm}, b = 2.8 \text{ cm}, \angle B = 65^{\circ}$

NOT POSSIBLE : NO triangles are possible. Another Analysis Using

P.317

if h=bsinA

in this case h=5.2 sin65°

=4.71

ach

ie 2.8<4.7

ho triangle exists

* Top Left box under

"Need to Know".

- p. 318 #4a
- 4. Determine the measure of angle θ to the nearest degree.

a)
$$\frac{12.3 \text{ cm}}{M} = \frac{120^{\circ}}{120^{\circ}} = \frac{9.1 \text{ cm}}{120^{\circ}}$$

$$\frac{5in \theta}{9.1} = \frac{\sin 120^{\circ}}{12.3}$$

$$\frac{9.1 \times \sin 120^{\circ}}{12.3}$$

$$\frac{12.3 \text{ cm}}{9.1 \times \sin 120^{\circ}}$$

$$\frac{12.3 \text{ cm}}{12.3}$$

$$\frac{12.3 \text{ cm}}{9.1 \times \sin 120^{\circ}}$$

$$\frac{12.3 \text{ cm}}{12.3}$$

$$\frac{12.3 \text{ cm}}{12.3}$$

p. 319 #7

7. A building of height h is observed from two points, P and Q, that are 105.0 m apart as shown. The angles of elevation at P and Q are 40° and 32° ,

building is 257.0 m.

Last Day's Quesons p. 300 #6c

- **6.** Angle θ is a principal angle that lies in quadrant 2 such that $0^{\circ} \leq \theta \leq 360^{\circ}$.
- K Given each trigonometric ratio,
 - i) determine the exact values of x, y, and r
 - ii) sketch angle θ in standard position
 - iii) determine the principal angle θ and the related acute angle β to the nearest degree

p. 304 #12 & 13

12. If $\sin \theta = -0.8190$ and $0^{\circ} \le \theta \le 360^{\circ}$, determine the value of θ to the nearest degree.

13. Angle θ lies in quadrant 2. Without using a calculator, which ratios must be false? Justify your reasoning.

d)
$$\csc \theta = 2.3151$$

b)
$$\tan \theta = 2.3151 \times F$$

e)
$$\cot \theta = 2.3151 \times$$

c)
$$\sec \theta = 2.3151 \times 6$$

f)
$$\sin \theta = 2.3151 \, \text{K}$$

5.7 The Cosine Law

Date: May 2/17

Recall: We use the Cosine Law when we are given:

2 sides and the **contained** angle (SAS) or all 3 sides (SSS)

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
 or $\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$

Ex. 1 Given \triangle ABC, where \angle A = 55°, b = 10 cm and c = 12 cm. Determine the length α f to the nearest tenth.

Ex. 2: Repeat given $\angle A = 125^{\circ}$.

Ex. 3 Given \triangle DEF, where d = 18 cm, e = 9 cm and f = 12 cm. Calculate the measure α fD, to the nearest degree.

If time, solve the triangle; if not, explain possible ambiguous case.

Note:

A <u>true bearing</u> to a point is the angle between due north and the line of travel of an object measured in degrees in a clockwise direction. We will refer to this as <u>bearing</u>.

A <u>conventional bearing</u> of a point is stated as the number of degrees east or west of the north-south line. We will refer to this as <u>direction</u>.

In the diagram below, the bearing of point P is 290°.

The direction method can be stated in two ways:

- W20°N (point P is 20° north of west)
- N70°W (point P is 70° west of north)

Without isolating cos D first...

Ex. 3 Given \triangle DEF, where d = 18 cm, e = 9 cm and f = 12 cm. Calculate the measure \bigcirc fD, to the nearest degree.

$$\frac{d^{2}=e^{2}+f^{2}-2ef\cos D}{18^{2}=9^{2}+12^{2}-2(9)(12)\cos D}$$

$$\frac{-2(9)(12)}{-2(9)(13)}=(05)$$

$$\frac{-2(9)(13)}{-2(9)(13)}=(05)$$

$$\frac{-2(9)(13)}{-2(9)(13)}=(05)$$

Are there any Homework Questions you would like to see on the board?

Last day's work: pp. 318-319 #1, 2, 3a, 4, 5ac, 7 [15,17]

Today's Homework Practice includes:

pp. 325-327 #1b, 2b, 3bc, 4ac, 5, 6, 8 [12,14]