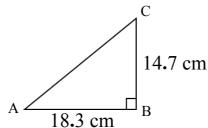
Before we begin, are there any questions from last day's work? 5.5.1 pp. 62-64 10-12, 15

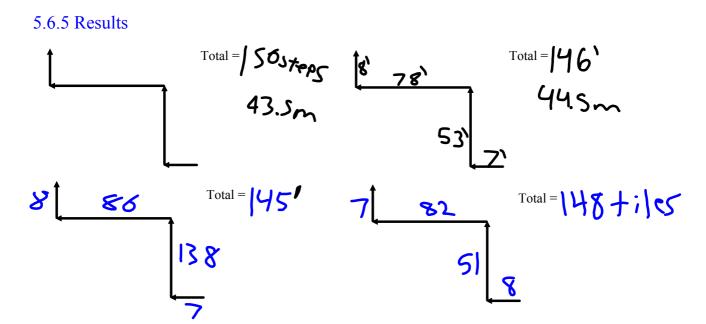

pp. 70-73 6, 18 or 19, 22, 25

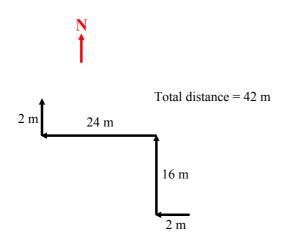
Today's Learning Goal(s):

By the end of the class, I will be able to:

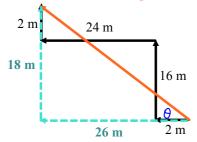
a) distinguish between vector and scalar quantities.

Warm-up: Determine the measure of $\angle A$.


5	6	1.	Introduction to Vector	•
`	n	Ι.	introduction to Vector	٠.


Date:		

- 1. Using PowerPoint (PPT 5.6.1), read through careers involving vectors, and complete 5.6.2 next page (p.2)
- 2. Using powerpoint (PPT 5.6.1), discuss vectors versus scalars, and complete 5.6.3
- 3. In groups of 4, complete 5.6.5. p.3 How far is it from our classroom to Room 2505 (SKY Radio Lab)?
- 4. If time, present/compare answers for 5.6.5 p.4 Homework: 5.6.6 Vector Analysis


5.6.2

Vectors and Language	Vectors in Sports	Vectors and Visuals
Name the career where vectors are used? linguistics	Name the career where vectors are used? aerodynamics	Name the career where vectors are used? computer animation
How are the vectors used in this career?	How are the vectors used in this career?	How are the vectors used in this career?
mapping the interaction of words or bits of text	studying forces like wind and spin	creating movement effects, like wind and clouds
improving: speech recognition software, and search engines	modifying the shapes, the car body, or the ball	
After listening and discussing the various ca	reers, why would it be necessary for you to le	earn about vectors?

$$|\vec{d}|^2 = 18^2 + 26^2 \qquad \tan \theta = \frac{18}{36}$$

$$= 1000$$

$$|\vec{\lambda}| = \sqrt{95}$$

$$= 31.6227$$

$$= 31.623 \text{ m}$$

$$tan \theta = \frac{18}{36}$$
 $\theta = 34.695$
 $= 34.70^{\circ}$

. He displacement is 31.603m W 34.7°N

or bearing of 3047