Date:

Today's Learning Goal(s):

By the end of the class, I will be able to:

a) prove trigonometric identities.

Last day's work: pp. 338-339 #1 - 5, 8 - 13 p. 340 #2

5.5 Trigonometric Identities

Date:

Equations are valid for only certain values of the variable.

For example:

$$2x + 1 = 7$$

$$x^2 - 5x - 14 = 0$$

Identities are valid for**all values** of the variable. For example:

$$2(x+3) = 2x+6$$

$$x^2 + 6x + 9 = (x+3)^2$$

Let's start with the circle definitions to develop some identities that we can use later.

SYR CXR TYX

5.5_1 Trigonometric Identities

To Prove an Identity:

* Separate the LS and RS, and work on them separately

Ex.1 Prove that
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

Ex.2 Prove that
$$\sin^2 \theta + \cos^2 \theta = 1$$

Ex.3 Prove that

a) $\frac{\cos \alpha \tan \alpha}{\sin \alpha} = 1$

b) $\cos \phi = \frac{1}{\cos \phi} - \sin \phi \tan \phi$

Identities

Reciprocal Identities

Quotient Identities

Pythagorean Identities

5.5_1 Trigonometric Identities

Are there any Homework Questions you would like to see on the board?

Last day's work: pp. 338-339 #1 – 5, 8 – 13 p. 340 #2

Study for the Unit 5 Summative!

Today's Homework Practice includes: p. 310 #1 – 6

> *Work ahead?* pp. 310-311 #8, 10 – 12 [14] Worksheet a – j (*online*)

Note: Sometimes using substitution can help simplify a question.

Ex. Simplify $(1 - \cos\theta)(1 + \cos\theta)$

Change to